About approximations of exponentials

  • P. -V. Koseleff
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 948)


We look for the approximation of exp(A1+A2) by a product in form exp(x1A1)exp(y1A2)⋯exp(xnA1) exp(ynA2). We specially are interested in minimal approximations, with respect to the number of terms. After having shown some isomorphisms between specific free Lie subalgebras, we will prove the equivalence of the search of such approximations and approximations of exp(A1+⋯+An). The main result is based on the fact that the Lie subalgebra spanned by the homogeneous components of the Hausdorff series is free.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bourbaki, Groupes et Algèbres de Lie, Éléments de Mathématiques, Hermann, Paris, 1972Google Scholar
  2. 2.
    P.-V. Koseleff, Calcul formel pour les méthodes de Lie en mécanique hamiltonienne, Thèse de troisième cycle, École Polytechnique, 1993Google Scholar
  3. 3.
    P.-V. Koseleff, Relations among Formal Lie Series and Construction of Symplectic Integrators, AAECC'10 proceedings, Lecture Notes in Computer Science 673 (1993)Google Scholar
  4. 4.
    P.-V. Koseleff, Relations among Formal Lie Series Transformations and isomorphisms between free Lie algebras, accepted in SFCA'95, Marne-la-Vallée (1995)Google Scholar
  5. 5.
    R. I. MacLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comp. 16(1) (1995), 151–168Google Scholar
  6. 6.
    M. Suzuki, Fractal Decomposition of Exponential Operators with Applications to Many-Body Theories and Monte Carlo Simulations, Physic Letters A 146 (1990), 319–323Google Scholar
  7. 7.
    M. Suzuki, General nonsymetric higher-order decompositions of exponential operators and symplectic integrators, Physic Letters A 165 (1993), 387–395Google Scholar
  8. 8.
    H. Yoshida, Conserved Quantities of Symplectic Integrators for Hamiltonian Systems, Physica D (1990)Google Scholar
  9. 9.
    H. Yoshida, Construction Of Higher Order Symplectic Integrators, Physics Letters A 150, (1990), 262–268Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. -V. Koseleff
    • 1
  1. 1.Équipe “Analyse Algébrique”, Institut de MathématiquesUniversité Pierre & Marie CurieParis cedex 05

Personalised recommendations