A theorem prover for lukaszewicz open default theory

  • Pascal Nicolas
  • Béatrice Duval
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 946)


We present here a correct and complete theorem prover for a certain class of formulas in Lukaszewicz' default logic. Whereas many papers are concerned by calculus of extensions for some default logic, we have developed a theorem prover, that means a computation method to check whether a given formula belongs to some extension of a default theory. This theorem prover works in Lukaszewicz' default logic, which ensures that an extension always exists. More precisely, we define a class of formulas called range-restricted Horn default logic. The restriction to Horn logic enables to use SLD-resolution to build proofs. Moreover range restriction, the constraint on variables occurring in the formulas, enables to deal with open defaults by using the unification mechanism. This point is quite original since open defaults are usually replaced by a set of instanciated defaults. Another point is the fact that computing a proof (in a backward chaining way), instead of building an extension (in a forward chaining way or by eliminating conflicts between defaults), allows us to hope a better efficiency in presence of open defaults.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Baader, Hollunder, 92]
    Baader F., Hollunder B., Embedding defaults into terminological knowledge representation formalism, In proceedings of KR 92, pp 306–317, 1992.Google Scholar
  2. [Besnard et al., 83]
    Besnard P., Quiniou R., Quinton P., A decidable subset of default logic. Proc. of AAAI, Washington, 1983.Google Scholar
  3. [Besnard, 89]
    Besnard P., An introduction to default logic. Springer Verlag, 1989.Google Scholar
  4. [Froidevaux, Mengin, 92]
    Froidevaux C., Mengin J., A framework for default logics. In proceedings of JELIA 92, Lecture notes in AI, vol 633 Springer Verlag, pp 154–173, Berlin, 1992.Google Scholar
  5. [Froidevaux, 93]
    Froidevaux C., Thèse d'habilitation à diriger des recherches, (in french) In research report n∘ 835, LRI University of Paris Sud, 1993.Google Scholar
  6. [Gottlob, Mingyi, 94]
    Gottlob G., Mingyi Z., Cumulative default logic: finite characterization, algorithms, and complexity. AI 69, vol 69 (1–2), pp 329–345, 1994.Google Scholar
  7. [Junker, Konolige, 90]
    Junker U., Konolige K., Computing the extensions of autoepistemic and default logics with a Truth Maintenance System. Proc of AAAI, 1990.Google Scholar
  8. [Levy, 91]
    Levy F., Computing extensions of default theories. In Symbolic and quantitative approachs to uncertainty. Lecture notes in Computer Science, vol 548 Springer Verlag, Berlin, 1991.Google Scholar
  9. [Lloyd, 87]
    Lloyd J. W., Foundations of logic programming. Springer Verlag, 1987.Google Scholar
  10. [Lukaszewicz, 84]
    Lukaszewicz W., Considerations on default logic: an alternative approach. Computer Intelligence, vol 4, pp 1–16, 1988.Google Scholar
  11. [Mengin, 94]
    Mengin J., Prioritized conflict resolution for default reasonning. In Proceedings of ECAI 94, pp 376–380, 1994.Google Scholar
  12. [Moinard, 93]
    Moinard Y., Unifying various approaches to default logic. Proc of IPMU 93, Lecture notes in Computer Science, vol 682, pp33–42, Springer Verlag, Berlin, 1993.Google Scholar
  13. [Papadimitriou, Sideri, 94]
    Papadimitriou C. H., Sideri M., Default theories that always have extensions. AI 69, vol 69 (1–2), pp 347–357, 1994.Google Scholar
  14. [Reiter, 80]
    Reiter R., A logic for default reasoning. AI 13, pp 81–132, 1980.Google Scholar
  15. [Risch, 93]
    Risch V. Caractérisations en termes de tableaux sémantiques pour la logique des défauts de Lukaszewicz. (in french) Revue d'Intelligence Artificielle, vol 7, n∘ 1, pp 95–123, 1993.Google Scholar
  16. [Schaub, 95]
    Schaub T., A new methodology for query-answering in default logics via structure-oriented theorem proving. Forthcoming in Journal of Automated Reasoning.Google Scholar
  17. [Schwind, Risch, 91]
    Schwind C., Risch V., A tableau-based characterization for default logic. In Symbolic and quantitave approachs to uncertainty. Lecture notes in Computer Science, vol 548, pp310–317, Springer Verlag, Berlin, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Pascal Nicolas
    • 1
  • Béatrice Duval
    • 1
  1. 1.Laboratoire d'Etudes et de Recherche en Informatique d'AngersUniversité d'AngersAngers cedex 01France

Personalised recommendations