Uncertain reasoning in concept lattices

  • Thomas Lukasiewicz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 946)


This paper presents concept lattices as a natural representation of class hierarchies in object-oriented databases and frame based knowledge representations. We show how to extend concept lattices by uncertainty in the form of conditional probabilities. We illustrate that uncertain reasoning within the hierarchical structure of concept lattices can be performed efficiently and makes uncertain conclusions more precise.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Beeri and P. A. Bernstein. Computational problems related to the design of normal form relational schemas. ACM Transactions on Database Systems, 4:30–59, 1979.CrossRefGoogle Scholar
  2. 2.
    D. Dubois, H. Prade, L. Godo, and R. L. de Màntaras. A symbolic approach to reasoning with linguistic quantifiers. In D. Dubois, M. P. Wellman, B. D. Ambrosio, and P. Smets, editors, Proc. of the 8th Conference on Uncertainty in Artificial Intelligence, pages 74–82, Stanford, CA, Jul. 1992. Morgan Kaufmann Publishers.Google Scholar
  3. 3.
    V. Duquenne. Contextual implications between attributes and some representation properties for finite lattices. In B. Ganter, R. Wille, and K. E. Wolff, editors, Beiträge zur Begriffsanalyse, pages 241–254. B. I.-Wissenschaftsverlag, Mannheim, 1987.Google Scholar
  4. 4.
    B. Ganter and R. Wille. Implikationen und Abhängigkeiten zwischen Merkmalen. In P. O. Degens, H.-J. Hermes, and O. Opitz, editors, Die Klassifikation und ihr Umfeld, pages 171–185. INDEKS Verlag, Frankfurt, 1986.Google Scholar
  5. 5.
    U. Güntzer, W. Kießling, and H. Thöne. New directions for uncertainty reasoning in deductive databases. In Proc. ACM SIGMOD Conference, pages 178–187, Denver, CO, May 1991.Google Scholar
  6. 6.
    J. Heinsohn. 300–01: Ein hybrider Ansatz zur Modellierung von Unsicherheit in terminologischen Logiken. PhD thesis, Universität Saarbrücken, 1993.Google Scholar
  7. 7.
    W. Kießling, T. Lukasiewicz, G. Köstler, and U. Güntzer. The TOP database model — taxonomy, object-orientation and probability. In Proc. Int'l Workshop on Uncertainty in Databases and Deductive Systems, Ithaca, New York, Nov. 1994.Google Scholar
  8. 8.
    T. Lukasiewicz. Uncertain reasoning in concept lattices. Technical Report 323, Math. Institut, Universität Augsburg, March 1995.Google Scholar
  9. 9.
    T. Lukasiewicz, W. Kießling, G. Köstler, and U. Güntzer. Taxonomic and uncertain reasoning in object-oriented databases. Technical Report 303, Math. Institut, Universität Augsburg, Aug. 1994.Google Scholar
  10. 10.
    Y. Sagiv, C. Delobel, D. S. Parker, and R. Fagin. An equivalence between relational database dependencies and a fragment of propositional logic. Journal of the Association for Computer Machinery, 28(3):435–453, Jun. 1981.Google Scholar
  11. 11.
    L. Sombé. Reasoning under incomplete information in artificial intelligence: A comparison of formalisms using a single example. International Journal of Intelligent Systems, 5(4):323–472, 1990.Google Scholar
  12. 12.
    H. Thöne, U. Güntzer, and W. Kießling. Towards precision of probabilistic bounds propagation. In D. Dubois, M. P. Wellman, B. D. Ambrosio, and P. Smets, editors, Proc. of the 8th Conference on Uncertainty in Artificial Intelligence, pages 315–322, Stanford, CA, Jul. 1992. Morgan Kaufmann Publishers.Google Scholar
  13. 13.
    H. Thöne, W. Kießling, and U. Güntzer. On cautious probabilistic inference and default detachment. Special issue of the Annals of Operations Research, 32, 1994. to appear.Google Scholar
  14. 14.
    M. von Rimscha. The determination of comparative and lower probability. In Workshop Uncertainty in Knowledge-Based Systems, FAW-B-90025, volume 2, pages 344–376, Ulm, Germany, 1990. FAW Ulm.Google Scholar
  15. 15.
    R. Wille. Restructuring lattice theory: an approach based on hierarchies of concepts. In I. Rival, editor, Ordered sets, pages 445–470. Reidel, Dordrecht, Boston, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Thomas Lukasiewicz
    • 1
  1. 1.Lehrstuhl für Informatik IIUniversität AugsburgAugsburgGermany

Personalised recommendations