Local Möbius transforms of monotone capacities

  • Alain Chateauneuf
  • Jean-Yves Jaffray
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 946)


The concept of local Möbius transform of a capacity is introduced and shown to provide a handier characterization of K-monotonicity than the standard Möbius transformation. It is moreover used to give a new proof of the preservation of K monotonicity by conditional lower probabilities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Chateauneuf & J.Y. Jaffray, Some characterizations of lower probabilities... through the use of Möbius inversion, Math. Soc. Sc., 17 (1989), 263–283.Google Scholar
  2. [2]
    G. Choquet, Théorie des capacités, Ann. Inst. Fourier (Grenoble) (1953)V.131–295.Google Scholar
  3. [3]
    De Robertis & J.A. Hartigan, Bayesian inference using intervals of measures, Ann. Statist., 9 (1981) 235–244.Google Scholar
  4. [4]
    R. Fagin & J.Y. Halpern, A new approach to updating beliefs, in Proc. 6th Conf. Uncertainty in A.I. (1990).Google Scholar
  5. [5]
    P.J. Huber, The use of Choquet capacities in statistics, Bull. Int. Statist. Inst. XLV, Book 4 (1973).Google Scholar
  6. [6]
    P.J. Huber & V. Strassen, Minimax tests and the Neyman-Pearson lemma for capacities, Ann. Stat.1 (1973) 251–263.Google Scholar
  7. [7]
    J.Y. Jaffray, Bayesian updating and belief functions, I.E.E.E. trans. on Systems, Man and Cybern. 22, N∘5 (1992) 1144–1152.Google Scholar
  8. [8]
    H.T. Nguyen, On random sets and belief functions, J. of Math. Anal. and Appl. 65 (1978) 531–542.Google Scholar
  9. [9]
    G.C. Rota, Theory of Möbius functions, Z. für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2 (1964) 340–368.Google Scholar
  10. [10]
    G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, New Jersey (1976).Google Scholar
  11. [11]
    Ph. Smets, Belief functions in Smets & al. (Eds) “Non standard logics for automated reasoning”, (Academic Press, London, 1988) 253–286.Google Scholar
  12. [11]
    G. Sundberg and C. Wagner, Generalized finite differences and Bayesian conditioning of Choquet capacities, Adv. in Appl. Math., 13, (1992), 262–272.Google Scholar
  13. [13]
    P. Walley, Coherent lower and upper probabilities, Research Report (1981), University of Warwick, Coventry.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Alain Chateauneuf
    • 1
  • Jean-Yves Jaffray
    • 2
  1. 1.CERMSEM, Université Paris IFrance
  2. 2.LAFORIA, Université Paris VIFrance

Personalised recommendations