ICALP 1995: Automata, Languages and Programming pp 444-454

# Compactness of systems of equations in semigroups

• T. Harju
• J. KarhumÄki
• W. Plandowski
Automata and Formal Languages III
Part of the Lecture Notes in Computer Science book series (LNCS, volume 944)

## Abstract

We considei systems u i = v i (i ∃ I) of equations in semigroups over finite sets of variables. A semigroup S is said to satisfy the compactness property (or CP, for short), if each system of equations has an equivalent finite subsystem. It is shown that all monoids in a variety V satisfy CP, if and only if the finitely generated monoids in V satisfy the maximal condition on congruences. We also show that if a finitely generated semigroup S satisfies CP, then S is necessarily hopfian and satisfies the chain condition on idempotents. Finally, we give three simple examples (the bicyclic monoid, the free monogenic inverse semigroup and the Baumslag-Solitar group) which do not satisfy CP, and show that the above necessary conditions are not sufficient.

## References

1. [1]
M.H. Albert and J. Lawrence, The descending chain condition on solution sets for systems of equations in groups, Proc. Edinburg Math. Soc. 29 (1986), 69–73.Google Scholar
2. [2]
M.H. Albert and J. Lawrence, A proof of Ehrenfeucht's Conjecture, Theoret. Comput. Sci. 41 (1985), 121–123.Google Scholar
3. [3]
G. Baumslag and D. Solitar, Some two-generator one-relator non-hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199–201.Google Scholar
4. [4]
A.H. Clifford and G.B. Preston, “The Algebraic Theory of Semigroups”, Vol I, Math. Surveys of the American Math. Soc.7, Providence, R.I., 1961.Google Scholar
5. [5]
P.M. Cohn, “Universal Algebra”, D. Reidel Publ. Co., Dordrecht, 1981.Google Scholar
6. [6]
K. Culik II and J. KarhumÄki, Systems of equations over a free monoid and Ehrenfeucht's Conjecture, Discrete Math. 43 (1983), 139–153.Google Scholar
7. [7]
P. Dubreil, Sur le demi-groupe des endomorhismes d'une algébre abstraite, Lincei-Rend. Sc. fis. mat. e nat. Vol. XLVI (1969), 149–153.Google Scholar
8. [8]
T. Evans, The lattice of semigroup varieties, Semigroup Forum 2 (1971), 1–43.Google Scholar
9. [9]
P. Freyd, Redei's finiteness theorem for commutative semigroups, Proc. Amer. Math. Soc. 19 (1968), 1003.Google Scholar
10. [10]
P.A. Grillet, A short proof of Redei's Theorem, Semigroup Forum 46 (1993), 126–127.Google Scholar
11. [11]
P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. 4 (1954), 419–436.Google Scholar
12. [12]
T. Harju and J. KarhumÄki, On the defect theorem and simplifiability, Semigroup Forum 33 (1986), 199–217.Google Scholar
13. [13]
T. Harju, J. KarhumÄki and W. Plandowski, Compactness of systems of equations in semigroups, Manuscript 1994.Google Scholar
14. [14]
J. KarhumÄki and W. Plandowski, On the size of independent systems of equations in semigroups, Manuscript 1994.Google Scholar
15. [15]
J. Lawrence, The nonexistence of finite test set for set-equivalence of finite substitutions, Bull. of the EATCS 28 (1986), 34–37.Google Scholar
16. [16]
A. de Luca and A. Restivo, On a generalization of a conjecture of Ehrenfeucht, Bulletin of the EATCS 30 (1986), 84–90.Google Scholar
17. [17]
W. Magnus, A. Karrass and D. Solitar, “Combinatorial Group Theory”, Dover Publ., New York, 1976.Google Scholar
18. [18]
Al.A. Markov, On finitely generated subsemigroups of a free semigroup, Semigroup Forum 3 (1971), 251–258.Google Scholar
19. [19]
A.A. Muchnik and A.L. Semenov, “Jewels of Formal Languages”, (Russian translation of a book by A. Salomaa), Mir, Moscow, 1986.Google Scholar
20. [20]
W.D. Munn, Free inverse semigroups, Proc. London Math. Soc. 29 (1974), 385–404.Google Scholar
21. [21]
H. Neumann, “Varieties of groups”, Springer-Verlag, Berlin, 1967.Google Scholar
22. [22]
M. Petrich, “Inverse Semigroups”, John Wiley & Sons, New York, 1984.Google Scholar
23. [23]
L. Redei, “The Theory of Finitely Generated Commutative Semi-Groups”, Pergamon Press, Oxford, 1965.Google Scholar
24. [24]
E. Schenkman, “Group Theory”, D. van Nostrand Co., Princeton, 1965.Google Scholar