Advertisement

Solving recursive net equations

  • Eike Best
  • Maciej Koutny
Semantics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 944)

Abstract

This paper describes a denotational approach to the Petri net semantics of recursive expressions. A domain of nets is identified such that the solution of a given recursive equation can be found by fixpoint approximation from some suitable starting point. In turn, a suitable starting point can be found by fixpoint approximation on a derived domain of sets of trees. The paper explains the theory on a series of examples and then summarises the most important results.

Keywords

Denotational semantics Petri nets Recursion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.Baeten, W.P.Weijland: Process Algebra. Cambridge Tracts in Theoretical Computer Science 18 (1990).Google Scholar
  2. 2.
    E.Best, R.Devillers, J.Esparza: General Refinement and Recursion Operators for the Petri Box Calculus. Springer-Verlag, LNCS Vol.665, 130–140 (1993).Google Scholar
  3. 3.
    E.Best, R.Devillers, J.Hall: The Petri Box Calculus: a New Causal Algebra with Multilabel Communication. Advances in Petri Nets 1992, G.Rozenberg (ed.), Springer-Verlag, Lecture Notes in Computer Science Vol. 609, 21–69 (1992).Google Scholar
  4. 4.
    E.Best, C.Fernández: Nonsequential Processes. A Petri Net View. Springer-Verlag, EATCS Monographs on Theoretical Computer Science Vol. 13 (1988).Google Scholar
  5. 5.
    E.Best, M.Koutny: A Refined View of the Box Algebra. Proceedings of the Petri Net Conference'95, G.De Michelis, M.Diaz (eds.), Springer-Verlag, Lecture Notes in Computer Science (1995).Google Scholar
  6. 6.
    R.Devillers: S-invariant Analysis of Petri Boxes. Technical Report LIT-273, Laboratoire d'Informatique Théorique, Université Libre de Bruxelles (1993). To appear in Acta Informatica (1995).Google Scholar
  7. 7.
    J.Esparza: Fixpoint Definition of Recursion in the Box Algebra. Memorandum, UniversitÄt Hildesheim (December 1991).Google Scholar
  8. 8.
    U.Goltz: On Representing CCS Programs by Finite Petri Nets. Proc. MFCS'88, Springer-Verlag, Lecture Notes in Computer Science Vol. 324, 339–350 (1988).Google Scholar
  9. 9.
    U.Goltz, R.van Glabbeek: Refinement of Actions in Causality Based Models. Springer-Verlag, Lecture Notes in Computer Science Vol.430, 267–300 (1989).Google Scholar
  10. 10.
    M.B.Hennessy: Algebraic Theory of Processes. The MIT Press (1988).Google Scholar
  11. 11.
    C.A.R.Hoare: Communicating Sequential Processes. Prentice Hall (1985).Google Scholar
  12. 12.
    R.Janicki, M.Koutny: Structure of Concurrency. Theoretical Computer Science Vol. 112, 5–52 (1993).Google Scholar
  13. 13.
    R.Janicki, P.E.Lauer: Specification and Analysis of Concurrent Systems — the COSY Approach. Springer-Verlag, EATCS Monographs on Theoretical Computer Science (1992).Google Scholar
  14. 14.
    A.Kiehn: Petri Net Systems and their Closure Properties. Springer-Verlag LNCS Vol.424, 306–328 (1990).Google Scholar
  15. 15.
    M.Koutny and E.Best: Operational Semantics for the Box Algebra. Draft paper (1995).Google Scholar
  16. 16.
    K.Jensen: Coloured Petri Nets. Basic Concepts. EATCS Monographs on Theoretical Computer Science, Springer-Verlag (1992).Google Scholar
  17. 17.
    P.E.Lauer: Path Expressions as Petri Nets, or Petri Nets with Fewer Tears. Technical Report MRM/70, Computing Laboratory, University of Newcastle upon Tyne (1974).Google Scholar
  18. 18.
    R.Milner: Communication and Concurrency. Prentice Hall (1989).Google Scholar
  19. 19.
    E.R.Olderog: Nets, Terms and Formulas. Cambridge Tracts in Theoretical Computer Science 23 (1991).Google Scholar
  20. 20.
    G.Plotkin: Domains. Department of Computer Science, University of Edinburgh (1983).Google Scholar
  21. 21.
    W.Reisig: Petri Nets. An Introduction. EATCS Monographs on Theoretical Computer Science Vol. 3, Springer-Verlag (1985).Google Scholar
  22. 22.
    D.Taubner: Finite Representation of CCS and TCSP Programs by Automata and Petri Nets. Springer-Verlag, Lecture Notes in Computer Science Vol. 369 (1989).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Eike Best
    • 1
  • Maciej Koutny
    • 2
  1. 1.Institut für InformatikUniversitÄt HildesheimHildesheim
  2. 2.Department of Computing ScienceUniversity of Newcastle upon TyneUK

Personalised recommendations