Skip to main content

Measure, category and learning theory

  • Learning, Coding, Robotics
  • Conference paper
  • First Online:
Book cover Automata, Languages and Programming (ICALP 1995)

Abstract

Measure and category (or rather, their recursion theoretical counterparts) have been used in Theoretical Computer Science to make precise the intuitive notion “for most of the recursive sets.” We use the notions of effective measure and category to discuss the relative sizes of inferrible sets, and their complements. We find that inferrible sets become large rather quickly in the standard hierarchies of learnability. On the other hand, the complements of the learnable sets are all large.

Supported in part by NSF Grant CCR 92-53582.

Supported in part by Latvian Council of Science Grant 93.599 and NSF Grant 9119540.

Supported in part by NSF Grant 9301339.

Supported in part by NSF Grants 9119540 and 9301339.

Supported by the Deutsche Forschungsgemeinschaft (DFG) Grant Me 672/4-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Angluin and C. H. Smith. Inductive inference: Theory and methods. Computing Surveys, 15:237–269, 1983.

    Google Scholar 

  2. J. Barzdins. Two theorems on the limiting synthesis of functions. In Barzdins, editor, Theory of Algorithms and Programs, volume 1, pages 82–88. Latvian State University, Riga, U.S.S.R., 1974.

    Google Scholar 

  3. L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information and Control, 28:125–155, 1975.

    Google Scholar 

  4. E. Borel. LeÇons sur les fonctions de variables réeles. Gauthier-Villars, Paris, 1905.

    Google Scholar 

  5. E. Borel. LeÇons sur la théorie des fonctions. Gauthier-Villars, Paris, 1914.

    Google Scholar 

  6. J. Case and C. Smith. Comparison of identification criteria for machine inductive inference. Theoretical Computer Science, 25(2):193–220, 1983.

    Google Scholar 

  7. R. Daley, B. Kalyanasundaram, and M. Velauthapillai. Breaking the probability 1/2 barrier in fin-type learning. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 203–217, ACM Press, 1992.

    Google Scholar 

  8. R. Daley, B. Kalyanasundaram, and M. Velauthapillai. Capabilities of fallible finite learning. Proceedings of the Sixth Annual Workshop on Computational Learning Theory, pages 199–208, ACM Press, 1993.

    Google Scholar 

  9. R. Daley, L. Pitt, M. Velauthapillai, and T. Will. Relations between probabilistic and team one-shot learners. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 228–239, Morgan Kauf-mann Publishers, 1992.

    Google Scholar 

  10. S. Fenner. Notions of resource-bounded category and genericity. Proceedings of the Sixth Annual Conference on Structure in Complexity Theory, pages 196–212. IEEE Computer Soceity, 1991.

    Google Scholar 

  11. R. Freivalds, M. Karpinski, and C. Smith. Co-learning of total recursive functions. Proceedings of the Seventh Annual Workshop on Computational Learning Theory, pages 190–197, ACM, 1994.

    Google Scholar 

  12. E. M. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.

    Google Scholar 

  13. W. Gasarch and C. H. Smith. Learning via queries. Journal of the ACM, 39(3):649–675, 1992. A shorter version is in 29th FOCS conference, 1988, pp. 130–137.

    Google Scholar 

  14. S. Jain and A. Sharma. Finite learning by a team. Proceedings of the Third Annual Workshop on Computational Learning Theory, pages 163–177, Morgan Kaufmann Publishers, 1990.

    Google Scholar 

  15. C. Kuratowski. Topologie Vol. 1, 4th edition, volume 20 of Monografie Matematyczne, Panstwowe Wydawnictwo Naukowe, 1958.

    Google Scholar 

  16. L. Lisagor. The Banach-Mazur game. Translated Version of Matematicheskij Sbornik, 38:201–206, 1981.

    Google Scholar 

  17. J. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and Systems Science, 44:226–258, 1992.

    Google Scholar 

  18. J. Lutz. The qualitative structure of exponential time. In Proceedings of the Eighth Annual Conference on Structure in Complexity Theory Conference, pages 158–175. IEEE Computer Society, 1993.

    Google Scholar 

  19. K. Mehlhorn. On the size of sets of computable functions. Proceedings of the Fourteenth Annual Symposium on Switching and Automata Theory, pages 190–196, IEEE Computer Soceity, 1973.

    Google Scholar 

  20. M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North-Holland, New York, 1978.

    Google Scholar 

  21. D. N. Osherson, M. Stob, and S. Weinstein. Aggregating inductive expertise. Information and Control, 70:69–95, 1986.

    Google Scholar 

  22. J. Oxtoby. Measure and Category. Springer-Verlag, 1971.

    Google Scholar 

  23. L. Pitt. Probabilistic inductive inference. Journal of the ACM, 36(2):383–433, 1989.

    Google Scholar 

  24. L. Pitt and C. Smith. Probability and plurality for aggregations of learning achines. Information and Computation, 77:77–92, 1988.

    Google Scholar 

  25. H. Putnam. Probability and confirmation. In Mathematics, Matter and Method, volume 1. Cambridge University Press, 1975.

    Google Scholar 

  26. C. H. Smith. The power of pluralism for automatic program synthesis. Journal of the ACM, 29(4):1144–1165, 1982.

    Google Scholar 

  27. C. Smith. A Recursive Introduction to the Theory of Computation. Springer-Verlag, 1994.

    Google Scholar 

  28. M. Velauthapillai. Inductive inference with a bounded number of mind changes. Proceedings of the Second Annual Workshop on Computational Learning Theory, pages 200–213, Palo, Morgan Kaufmann, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zoltán Fülöp Ferenc Gécseg

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fortnow, L. et al. (1995). Measure, category and learning theory. In: Fülöp, Z., Gécseg, F. (eds) Automata, Languages and Programming. ICALP 1995. Lecture Notes in Computer Science, vol 944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60084-1_105

Download citation

  • DOI: https://doi.org/10.1007/3-540-60084-1_105

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60084-8

  • Online ISBN: 978-3-540-49425-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics