Advertisement

The rabin index and chain automata, with applications to automata and games

  • Sriram C. Krishnan
  • Anuj Puri
  • Robert. K. Brayton
  • Pravin P. Varaiya
Session 8: Invited Titorial
Part of the Lecture Notes in Computer Science book series (LNCS, volume 939)

Abstract

In this paper we relate the Rabin Index of an ω-language to the complexity of translation amongst automata, strategies for two-person regular games, and the complexity of controller-synthesis and verification of finite state systems, via a new construction to transform Rabin automata to Chain automata. The Rabin Index is the minimum number of pairs required to realize the language as a deterministic Rabin automaton (DRA), and is a measure of the inherent complexity of the ω-language. Chain automata are a special kind of Rabin automata where the sets comprising the acceptance condition form a chain. Our main construction translates a DRA with n states and h pairs to a deterministic chain automaton (DCA) with n.h k states, where k is the Rabin Index of the language. Using this construction, we can transform a DRA into a minimum-pair DRA or a minimum-pair deterministic Streett automaton (DSA), each with n.h k states. Using a simple correspondence between tree automata (TA) and games, we extend the constructions to translate between nondeterministic Rabin and Streett TA while simultaneously reducing the number of pairs; for the class of “trim” deterministic Rabin TA our construction gives a minimum-index deterministic Chain TA, or a minimum-pair DRTA or DSTA, each with n.h k states, where k is RI of the tree-language.

Using these results, we obtain upper bounds on the memory required to implement strategies in infinite games. In particular, the amount of memory required in a game presented as a DRA, or DSA, is bounded by nh k , where k is the RI of the game language.

References

  1. 1.
    O. Carton. Chain Automata. In IFIP 13th World Computer Congress, pages 451–458, August 1994.Google Scholar
  2. 2.
    E. S. Chang, Z. Manna, and A. Pnueli. The Safety-Progress Classification. In F. L. Bauer, W. Bauer, and H. Schwichtenberg, editors, Logic and Algebra of Specification, pages 143–202, 1993.Google Scholar
  3. 3.
    E. A. Emerson. Automata, tableaux, and temporal logics. In Logics of Programs, LNCS, pages 79–88. Springer-Verlag, 1985.Google Scholar
  4. 4.
    E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of programs. In Proc. of the Symp. on Foundations of Computer Science, pages 328–337, October 1988.Google Scholar
  5. 5.
    E. A. Emerson and C. S. Jutla. Trees automata, Mu-calculus and determinacy. In Proc. of the Symp. on Foundations of Computer Science, pages 368–377, October 1991.Google Scholar
  6. 6.
    E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of mu-calculus. In Computer Aided Verification, volume 697 of LNCS, pages 385–396. Springer-Verlag, 1994.Google Scholar
  7. 7.
    Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. of the ACM Symposium on the Theory of Computing, pages 60–65, May 1982.Google Scholar
  8. 8.
    C. S. Jutla. Personal communication, February 1995.Google Scholar
  9. 9.
    M. Kaminski. A Classification of ω-regular languages. Theoretical Computer Science, 36:217–229, 1985.Google Scholar
  10. 10.
    S. C. Krishnan, A. Puri, and R. K. Brayton. Deterministic ω-automata vis-a-vis Deterministic Buchi Automata. In Algorithms and Computation, volume 834 of LNCS, pages 378–386. Springer-Verlag, 1994.Google Scholar
  11. 11.
    S. C. Krishnan, A. Puri, and R. K. Brayton. Structural Complexity of ω-automata. In Symposium on Theoretical Aspects of Computer Science, volume 900 of LNCS, pages 143–156. Springer-Verlag, 1995.Google Scholar
  12. 12.
    R. P. Kurshan. Computer-aided Verification of Coordinating Processes: the Automata-theoretic approach. Princeton University Press, 1994.Google Scholar
  13. 13.
    O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of Discrete Controllers for Timed Systems. In Symposium on Theoretical Aspects of Computer Science, volume 900 of LNCS, pages 229–242. Springer-Verlag, 1995.Google Scholar
  14. 14.
    R. McNaughton. Infinite gmaes played on finite graphs. Annals of Pure and Applied Logic, 65:149–184, 1993.Google Scholar
  15. 15.
    A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. of the ACM Symposium on Principles of Programming Languages, pages 179–180, 1989.Google Scholar
  16. 16.
    M. O. Rabin. Automata on Infinite Objects and Church's Problem, volume 13 of Regional Conf. Series in Mathematics. American Mathematical Society, Providence, Rhode Island, 1972.Google Scholar
  17. 17.
    S. Safra and M. Y. Vardi. On ω-Automata and Temporal Logic. In Proc. of the ACM Symposium on the Theory of Computing, pages 127–137, May 1989.Google Scholar
  18. 18.
    Shmuel Safra. Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann Institute of Science, Rehovot, Israel, March 1989.Google Scholar
  19. 19.
    W. Thomas. Automata on Infinite Objects. In J. van Leeuwen, editor, Formal Models and Semantics, volume B of Handbook of Theoretical Computer Science, pages 133–191. Elsevier Science, 1990.Google Scholar
  20. 20.
    W. Thomas. On the synthesis of strategies in infinite games. In Symposium on Theoretical Aspects of Computer Science, volume 900 of LNCS, pages 1–13. Springer-Verlag, 1995.Google Scholar
  21. 21.
    K. Wagner. On ω-Regular Sets. Information and Control, 43:123–177, 1979.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Sriram C. Krishnan
    • 1
  • Anuj Puri
    • 1
  • Robert. K. Brayton
    • 1
  • Pravin P. Varaiya
    • 1
  1. 1.Department of EECSUniversity of CaliforniaBerkeley

Personalised recommendations