Advertisement

Performance bounds for stochastic timed Petri nets

  • Zhen Liu
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 935)

Abstract

Stochastic timed Petri nets are a useful tool in performance analysis of concurrent systems such as parallel computers, communication networks and flexible manufacturing systems. In general, performance measures of stochastic timed Petri nets are difficult to obtain for problems of practical sizes. In this paper, we provide a method to compute efficiently upper and lower bounds for the throughputs and mean token numbers in general Markovian timed Petri nets. Our approach is based on uniformization technique and linear programming.

Keywords

Stochastic timed Petri net performance bound throughput mean token number uniformization linear programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, A. Cumani, “The Effect of Execution Policies on the Semantics and Analysis of Stochastic Petri Nets”, IEEE Trans. Software Eng., Vol 15, pp. 832–846, 1989.Google Scholar
  2. 2.
    M. Ajmone Marsan, G. Balbo, and G. Conte. “A Class of Generalized Stochastic Petri Nets for the Performance Analysis of Multiprocessor Systems”, ACM Transactions on Computer Systems, Vol. 2, No. 1, May 1984.Google Scholar
  3. 3.
    M. Ajmone Marsan, G. Balbo, G. Conte, Performance Models of Multiprocessor Systems, Cambridge, MA, MIT Press, 1986.Google Scholar
  4. 4.
    F. Baccelli, “Ergodic Theory of Stochastic Petri Nets”, The Annals of Probability, Vol. 20, pp. 375–396, 1992.Google Scholar
  5. 5.
    F. Baccelli, G. Balbo, R.J. Boucherie, J. Campos, and G. Chiola. “Annotated Bibliography on Stochastic Petri Nets”, In O.J. Boxma and G.M. Koole (editors), Performance Evaluation of Parallel and Distributed Systems — Solution Methods. CWI Tract 105 & 106, CWI, Amsterdam, 1994.Google Scholar
  6. 6.
    F. Baccelli, P. Bremaud, Elements of Queueing Theory, Springer-Verlag, Berlin, 1994.Google Scholar
  7. 7.
    F. Baccelli, M. Canales, “Parallel Simulation of Stochastic Petri Nets Using Recursive Equations”, ACM-Tomacs, Vol. 3, pp. 20–41, 1993.Google Scholar
  8. 8.
    F. Baccelli, G. Cohen, B. Gaujal, “Recursive Equations and Basic properties of Timed Petri Nets”, Journal of Discrete Event Systems, Vol. 1, pp. 415–439, 1992.Google Scholar
  9. 9.
    F. Baccelli and B. Gaujal. “Stationary regime and stability of free-choice Petri nets”, In Proceedings of the 11-th International Conference on Analysis and Optimisation of Systems, Juan les Pins, France, June 1994. Springer Verlag.Google Scholar
  10. 10.
    F. Baccelli and P. Konstantopoulos. “Estimates of Cycle Times in Stochastic Petri Nets”, Lecture Notes in Control and Information Sciences, Springer Verlag, Vol. 177, pp. 1–21, 1992.Google Scholar
  11. 11.
    F. Baccelli, Z. Liu, “Comparison Properties of Stochastic Decision Free Petri Nets”, IEEE Trans. on Automatic Control, Vol. 37, pp. 1905–1920, 1992.Google Scholar
  12. 12.
    F. Baccelli, Z. Liu, M. Silva, “Global and Local Monotonicities of Stochastic Petri Nets”, in preparation.Google Scholar
  13. 13.
    D. Bertsimas, I. Paschalidis, J. Tsitsiklis, “Optimization of Multiclass Queueing Networks: Polyhedral and Nonlinear Characterizations of Achievable Performance”, to appear in Annals of Applied Probability.Google Scholar
  14. 14.
    D. Bertsimas, I. Paschalidis, J. Tsitsiklis, “Branching Bandits and Klimov's Problem: Achievable Region and Side Constraints”, preprint.Google Scholar
  15. 15.
    R.J. Boucherie. “A Characterisation of Independence for Competing Markov Chains with Applications to Stochastic Petri Nets”, Proceedings of PNPM, 1993.Google Scholar
  16. 16.
    J. P. Buzen, “A computational Algorithm for Closed Queueing Networks with Exponential Servers.” Comm. ACM, Vol. 14, pp. 527–531, 1973.Google Scholar
  17. 17.
    J. Campos, G. Chiola, and M. Silva. “Ergodicity and Throughput Bounds of Petri Nets with Unique Consistent Firing Count Vector”, IEEE Transactions on Software Engineering, Vol. 17, pp. 117–125, February 1991.Google Scholar
  18. 18.
    J. Campos, G. Chiola, and M. Silva. “Properties and performance bounds for closed free choice synchronized monoclass queueing networks”, IEEE Transactions on Automatic Control, Vol. 36, pp. 1368–1382, December 1991.Google Scholar
  19. 19.
    J. Campos, B. Sánchez, and M. Silva. “Throughput Lower Bounds for Markovian Petri Nets: Transformation Techniques”, In Proceedings of the 4rd International Workshop on Petri Nets and Performance Models, pages 322–331, Melbourne, Australia, December 1991. IEEE-Computer Society Press.Google Scholar
  20. 20.
    J. Campos, M. Silva, “Embedded Product-form Queueing Networks and the Improvement of Performance Bounds for Petri Net Systems”, Performance Evaluation, Vol. 18, pp. 3–19, 1993.Google Scholar
  21. 21.
    K. M. Chandy and C. H. Sauer, “Computational Algorithms for Product Form Queueing Networks.” Comm. ACM, Vol. 23, pp. 573–583, 1980.Google Scholar
  22. 22.
    G. Chiola. “GreatSPN 1.5 Software Architecture”, In Proc. 5th Int. Conf. Modeling Techniques and Tools for Computer Performance Evaluation, Torino, Italy, February 1991.Google Scholar
  23. 23.
    G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte. “Generalized Stochastic Petri Nets: A Definition at the Net Level and Its Implications”, IEEE Transactions on Software Engineering, Vol. 19, pp. 89–107, February 1993.Google Scholar
  24. 24.
    G. Chiola, C. Anglano, J. Campos, J. M. Colom, and M. Silva. “Operational Analysis of Timed Petri Nets and Application to the Computation of Performance Bounds”, In itProceedings of the 5th International Workshop on Petri Nets and Performance Models, pages 128–137, Toulouse, France, October 1993. IEEE-Computer Society Press.Google Scholar
  25. 25.
    G. Chiola, S. Donatelli, G. Franceschinis, “GSPN versus SPN: What is the Actual Role of Immediate Transitions?”, In Proceedings of the 4rd International Workshop on Petri Nets and Performance Models, pages 20–31, Melbourne, Australia, December 1991. IEEE-Computer Society Press.Google Scholar
  26. 26.
    G. Ciardo, J. Muppala, and K.S. Trivedi. “SPNP: Stochastic Petri net package”, In Proc. 3rd Intern. Workshop on Petri Nets and Performance Models, Kyoto, Japan, December 1989. IEEE-CS Press.Google Scholar
  27. 27.
    J.B. Dugan, K.S. Trivedi, R.M. Geist, and V.F. Nicola. “Extended Stochastic Petri Nets: Applications and Analysis”, In Proc. PERFORMANCE '84, Paris, France, December 1984.Google Scholar
  28. 28.
    G. Florin and S. Natkin. “Les réseaux de Petri stochastiques”, Technique et Science Informatiques, Vol. 4, February 1985.Google Scholar
  29. 29.
    C. Hanen, A. Munier, “Cyclic scheduling on parallel processors: an overview”, In Scheduling Theory and Its Applications, P. Chretienne et al. (Eds.), J. Wiley, to appear, 1995.Google Scholar
  30. 30.
    J. Keilson, Markov Chain Models / Rarity and Exponentiality, Springer-Verlag, 1979.Google Scholar
  31. 31.
    S. Kumar, P. R. Kumar, “Performance Bounds for Queueing Networks and Scheduling Policies”, Technical Report, Coordinated Science Laboratory, Univ. of Illinois, 1992.Google Scholar
  32. 32.
    P. R. Kumar, S. P. Meyn, “Stability of Queueing Networks and Scheduling Policies”, Technical Report, Coordinated Science Laboratory, Univ. of Illinois, 1993.Google Scholar
  33. 33.
    Z. Liu, “Performance Bounds of Stochastic Timed Petri Nets by Linear Programming Approach”, in preparation.Google Scholar
  34. 34.
    M.K. Molloy. “Performance Analysis using Stochastic Petri Nets”, IEEE Transaction on Computers, Vol. 31, pp.913–917, September 1982.Google Scholar
  35. 35.
    T. Murata, “Petri Nets: Properties, Analysis and Applications”, Proc. of the IEEE, Vol. 77, pp. 541–580, 1989.Google Scholar
  36. 36.
    M. Neuts, Matrix-Geometric Solutions in Stochastic Models, Johns Hopkins, Baltimore, Md. 1981.Google Scholar
  37. 37.
    M. Reiser and H. Kobayashi, “Queueing Networks with Multiple Closed Chains: Theory and Computational Algorithms.” IBM J. Res. Dev., Vol. 19, pp. 283–294, 1975.Google Scholar
  38. 38.
    M. Reiser and S. S. Lavenberg, “Mean-value analysis of closed multichain queueing networks.” J. ACM, Vol. 27, pp. 313–322, 1980.Google Scholar
  39. 39.
    S. Stidham, “A Last Word on L=λW”, Oper. Res., Vol. 22, pp.417–421, 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Zhen Liu
    • 1
  1. 1.INRIACentre Sophia AntipolisSophia-AntipolisFrance

Personalised recommendations