Causal behaviours and nets

  • Joost-Pieter Katoen
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 935)


Specification formalisms in which causality and independence of actions can be explicitly expressed are beneficial from a design point of view. The explicit presence (or absence) of a causal dependency between actions can be used effectively during the design. We consider a specification formalism in which causal relations between actions play a central role and provide a semantics in terms of (an extension of) labelled place/transition nets. The behaviour of nets is defined by labelled partially ordered sets.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Baeten and W. Weijland. Process Algebra. Cambridge University Press, 1990.Google Scholar
  2. 2.
    E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net theory. Th. Comp. Sci., 55:87–136, 1987.Google Scholar
  3. 3.
    E. Best, R. Devillers, and J. Hall. The Box calculus: a new causal algebra with multi-label communication. In G. Rozenberg (ed), Advances in Petri Nets, LNCS 609:21–69. 1992.Google Scholar
  4. 4.
    T. Bolognesi and G. Ciaccio. Cumulating constraints on the ‘when’ and the ‘what'. In R. Tenney et al (eds), Formal Description Techniques VI, pp. 433–448. 1994.Google Scholar
  5. 5.
    M. Broy. Formalization of distributed, concurrent, reactive systems. In E. Neuhold and M. Paul (eds), Formal Description of Programming Concepts, pp. 319–361. 1991.Google Scholar
  6. 6.
    G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte. Generalized stochastic Petri nets: A definition at the net level and its implications. IEEE Trans. on Software Eng., 19(2):89–106, 1993.Google Scholar
  7. 7.
    R. Coelho da Costa and J.-P. Courtiat. Using Petri Nets as a model for Petri Nets. Proc. IEEE Workshop on Future Trends of Distr. Comp. Syst., pp. 41–47. 1992.Google Scholar
  8. 8.
    L. Ferreira Pires. Architectural Notes: a Framework for Distributed Systems Development. PhD thesis, Univ. of Twente, 1994.Google Scholar
  9. 9.
    H. Garavel and J. Sifakis. Compilation and verification of LOTOS specifications. In L. Logrippo et al (eds), PSTV X, pp. 359–376. 1990.Google Scholar
  10. 10.
    U. Goltz and W. Reisig. CSP-programs as nets with individual tokens. In G. Rozenberg et al (eds), Advances in Petri Nets, LNCS 188:169–196. 1984.Google Scholar
  11. 11.
    J. Gunawardena. Causal automata I: Confluence ≡ {AND, OR}-causality. In M. Kwiatkowska et al (eds), Semantics for Concurrency, pp. 137–156. 1990.Google Scholar
  12. 12.
    J. Gunawardena. Geometric logic, causality and event structures. In J. Baeten and J. Groote (eds), Concur'91, LNCS 527:266–280. 1991.Google Scholar
  13. 13.
    J. Gunawardena. Causal automata. Th. Comp. Sci., 101:265–288, 1992.Google Scholar
  14. 14.
    C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.Google Scholar
  15. 15.
    P. Hoogers, H. Kleijn, and P. Thiagarajan. Local event structures and Petri nets. In E. Best (ed), Concur'93, LNCS 715:462–476. 1993.Google Scholar
  16. 16.
    R. Janicki. A formal semantics for concurrent systems with a priority relation. Acta Informatica, 24:33–55, 1987.Google Scholar
  17. 17.
    K. Jensen. Coloured Petri nets and the invariant-method. Th. Comp. Sci., 14:317–336, 1981.Google Scholar
  18. 18.
    J.-P. Katoen Causal behaviours and nets. Tech. rep. 94-70, Univ. of Twente. 1994.Google Scholar
  19. 19.
    C. Koomen. Algebraic specification and verification of communication protocols. Science of Computer Programming, 5(1):1–37, 1985.Google Scholar
  20. 20.
    L. Lamport. Time, clocks and the ordering of events. CACM, 21(7):558–565, 1978.Google Scholar
  21. 21.
    R. Langerak. Transformation and Semantics for LOTOS. PhD thesis, Univ. Twente, 1992.Google Scholar
  22. 22.
    P. Merlin and D. Farber. Recoverability of communication protocols — implications of a theoretical study. IEEE Trans. on Communications, 24:1036–1043, 1976.Google Scholar
  23. 23.
    R. Milner. Communication and Concurrency. Prentice-Hall, 1989.Google Scholar
  24. 24.
    J. Peterson. Petri net theory and modeling of systems. Prentice-Hall, 1981.Google Scholar
  25. 25.
    G. Pinna and A. Poigné. On the nature of events. In I. Havel and V. Koubek (eds), Mathematical Foundations of Computer Science'92, LNCS 629:430–441. 1992.Google Scholar
  26. 26.
    G. Pinna and A. Poigné. On the specification of elementary reactive behaviour. In S. Brookes et al (eds), Mathematical Foundations of Programming Semantics'93, LNCS 802:271–292. 1994.Google Scholar
  27. 27.
    W. Reisig. Petri Nets — An Introduction. Springer-Verlag, 1985.Google Scholar
  28. 28.
    A. Rensink. Posets for configurations! In W. Cleaveland (ed), Concur'92, LNCS 630:269–285. 1992.Google Scholar
  29. 29.
    G. Rozenberg and P. Thiagarajan. Petri nets: Basic notions, structure, behaviour. In J. de Bakker et al (eds), Current Trends in Concurrency, LNCS 224:585–668. 1986.Google Scholar
  30. 30.
    R. Schwarz and F. Mattern. Detecting causal relationships in distributed computations: in search of the holy grail. Distributed Computing, 7:149–174, 1994.Google Scholar
  31. 31.
    R. van Glabbeek and F. Vaandrager. Petri net models of algebraic theories of concurrency. In J. de Bakker et al (eds), PARLE'87, LNCS 259:224–242. 1987.Google Scholar
  32. 32.
    M. van Sinderen, L. Ferreira Pires, C. Vissers, and J.-P. Katoen. A design model for open distributed processing systems. Comp. Netw. & ISDN Syst., 1995.Google Scholar
  33. 33.
    C. Vissers, M. van Sinderen, and L. Ferreira Pires. What makes industries believe in formal methods. In A. Danthine et al (eds), PSTV XIII, pp. 3–26. 1993.Google Scholar
  34. 34.
    G. Winskel. An introduction to event structures. In J. de Bakker et al (eds), Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, LNCS 354:364–397. 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Joost-Pieter Katoen
    • 1
  1. 1.Department of Computer ScienceUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations