Advertisement

Symbolic reachability graph and partial symmetries

  • S. Haddad
  • J M. Ilié
  • M. Taghelit
  • B. Zouari
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 935)

Abstract

The construction of symbolic reachability graphs is a useful technique for reducing state explosion in High-level Petri nets. Such a reduction is obtained by exploiting the symmetries of the whole net [1]. In this paper, we extend this method to deal with partial symmetries. In a first time, we introduce an example which shows the interest and the principles of our method. Then we develop the general algorithm. Lastly we enumerate the properties of this Extended Symbolic Reachability Graph, including the reachability equivalence.

Keywords

Well-Formed Petri nets Symbolic Reachability graphs Partial Symmetries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, “On Well-formed coloured Nets and their Symbolic Reachability Graph”, proceedings 11th International Conference on Application and Theory of Petri Nets, Paris, France, Juin 1990.Google Scholar
  2. [2]
    Chiola G., Franceschinis G., Gaeta R., “A symbolic simulation mechanism for Well-Formed Coloured Petri Nets”. In proc. of the 25th simulation symposium, Orlando, Florida, 1992.Google Scholar
  3. [3]
    Dutheillet C., Haddad S., “Aggregation and Disaggregation of States in Colored Stochastic Petri Nets: Application to a Multiprocessor Architecture”, proceedings 3rd International Workshop on Petri Nets and Performance Models, IEEE-CS Press, Kyoto, Japan, Juillet 1989.Google Scholar
  4. [4]
    Dutheillet C., “Symétries dans les réseaux colorés, définition, analyse et application à de performance”, Thèse de doctorat de l'université de Paris VI, Mars 1992.Google Scholar
  5. [5]
    Genrich H.J., “Predicate / Transition Nets”. In High-level Petri Nets. Theory and Application, K. Jensen and G. Rozenberg eds., Springer-Verlag, 1991, pp 3–43.Google Scholar
  6. [6]
    Haddad S., “Une catégorie régulière de réseaux de Petri de haut-niveau: définition, propriétés et réductions”, Thèse de doctorat de l'université de PARIS VI; Octobre 1987.Google Scholar
  7. [7]
    Haddad S., Ilié J-M, Zouari B., “A Reduced State Graph for Symmetrical Protocols”, Rapport de recherche, Institut Blaise Pascal RR 92-57. Septembre 1992.Google Scholar
  8. [8]
    Huber P., Jensen A.M., Jepsen L.O., Jensen K., “ Reachability Trees for High-Level Petri Nets”, TCS 45, North Holland, pp 261–292, 1986.Google Scholar
  9. [9]
    Jensen K.,“High-Level Petri nets”, Proceedings of the 3rd European Workshop on Application and Theory of Petri Nets, Varenna, Italy, 1982.Google Scholar
  10. [10]
    Jensen K., “High-Level Petri nets. A combination of Predicate/transition nets and coloured nets”; advanced course on Petri nets. Bad Honnef (1986).Google Scholar
  11. [11]
    Zouari B., “Methodes de Spécification et de vérification de Protocoles de Communication”; Thèse de doctorat de l'université de Paris VI, MASI 93.04, Janvier 1993.Google Scholar
  12. [12]
    Haddad S., Ilié J.M., Taghelit M., Zouari B., “Symbolic Reachability graph And Partial Symmetries”, tech. report of Masi lab., P.&M. Curie University, Paris, n∘95.30, Mars 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • S. Haddad
    • 1
  • J M. Ilié
    • 2
  • M. Taghelit
    • 1
  • B. Zouari
    • 3
  1. 1.LAMSADE-URA 825Univ. Paris DauphineParis
  2. 2.MASI-CNRS URA 818Univ. Pierre-Marie CurieParis
  3. 3.Fac. des sciences de TunisTunis

Personalised recommendations