An algebraic semantics for hierarchical P/T nets

  • Twan Basten
  • Marc Voorhoeve
Full Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 935)


The first part of this paper gives an algebraic semantics for Place/Transition nets in terms of an algebra which is based on the process algebra ACP. The algebraic semantics is such that a P/T net and its term representation have the same operational behavior. As opposed to other approaches in the literature, the actions in the algebra do not correspond to the firing of a transition, but to the consumption or production of tokens. Equality of P/T nets can be determined in a purely equational way.

The second part of this paper extends the results to hierarchical P/T nets. It gives a compositional algebraic semantics for both their complete operational behavior and their high-level, observable behavior. By means of a non-trivial example, the Alternating-Bit Protocol, it is shown that the notions of abstraction and verification in the process algebra ACP can be used to verify in an equational way whether a hierarchical P/T net satisfies some algebraic specification of its observable behavior. Thus, the theory in this paper can be used to determine whether two hierarchical P/T nets have the same observable behavior. As an example, it is shown that the Alternating-Bit Protocol behaves as a simple one-place buffer. The theory forms a basis for a modular, top-down design methodology based on Petri nets.

Key words

Place/Transition nets hierarchical Petri nets process algebra abstraction verification top-down design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ASPT Foundation, Eindhoven University of Technology. ExSpect 4.2 User Manual, 1994.Google Scholar
  2. 2.
    J.C.M. Baeten and J.A. Bergstra. Non Interleaving Process Algebra. In proc. CONCUR '93, LNCS 715, pages 308–323. Springer-Verlag, 1993.Google Scholar
  3. 3.
    J.C.M. Baeten and C. Verhoef. A Congruence Theorem for Structured Operational Semantics with Predicates. In proc. CONCUR '93, LNCS 715, pages 477–492. Springer-Verlag, 1993.Google Scholar
  4. 4.
    J.C.M. Baeten and W.P. Weijland. Process Algebra, Cambridge Tracts in Theoretical Computer Science 18. Cambridge University Press, 1990.Google Scholar
  5. 5.
    T. Basten and M. Voorhoeve. An Algebraic Semantics for Hierarchical P/T Nets. Computing Science Report, Eindhoven University of Technology, 1995. To appear.Google Scholar
  6. 6.
    J.A. Bergstra, I. Bethke, and A. Ponse. Process Algebra with Iteration and Nesting. The Computer Journal, 37(4):241–258, 1994.Google Scholar
  7. 7.
    J.A. Bergstra and J.W. Klop. The Algebra of Recursively Defined Processes and the Algebra of Regular Processes. In proc. ICALP '84, LNCS 172, pages 82–95. Springer-Verlag, 1984.Google Scholar
  8. 8.
    E. Best, R. Devillers, and J.G. Hall. The Box Calculus: A New Causal Algebra with Multilabel Communication. In APN '92, LNCS 609, pages 21–69. Springer-Verlag, 1992.Google Scholar
  9. 9.
    G. Boudol, G. Roucairol, and R. de Simone. Petri Nets and Algebraic Calculi of Processes. In APN '85, LNCS 222, pages 41–58. Springer-Verlag, 1985.Google Scholar
  10. 10.
    W. Brauer, R. Gold, and W. Vogler. A Survey of Behaviour and Equivalence Preserving Refinements of Petri Nets. In APN '90, LNCS 483, pages 1–46. Springer-Verlag, 1990.Google Scholar
  11. 11.
    P. Degano, R. De Nicola, and U. Montanari. A Distributed Operational Semantics for CCS Based on Condition/Event Systems. Acta Informatica, 26(1/2):59–91, October 1988.Google Scholar
  12. 12.
    C. Dietz and G. Schreibert. A Term Representation of P/T Systems. In proc. ATPN '94, LNCS 815, pages 239–257. Springer-Verlag, 1994.Google Scholar
  13. 13.
    R. van Glabbeek. Comparative Concurrency Semantics and Refinements of Actions. PhD thesis, Free University, Amsterdam, The Netherlands, 1990.Google Scholar
  14. 14.
    R. van Glabbeek. What is Branching Time Semantics and Why to Use It? In Bulletin of the EATCS 53, pages 191–198. June 1994.Google Scholar
  15. 15.
    R.J. van Glabbeek and F.W. Vaandrager. Petri Net Models for Algebraic Theories of Concurrency. In proc. PARLE '87, vol. II, LNCS 259, pages 224–242. Springer-Verlag, 1987.Google Scholar
  16. 16.
    U. Goltz. On Representing CCS Programs by Finite Petri Nets. In proc. MFCS '88, LNCS 324, pages 339–350. Springer-Verlag, 1988.Google Scholar
  17. 17.
    K.M. van Hee. Information Systems Engineering: A Formal Approach. Cambridge University Press, 1994.Google Scholar
  18. 18.
    C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.Google Scholar
  19. 19.
    K. Jensen. Coloured Petri Nets. Basic Consepts, Analysis Methods and Practical Use, EATCS monographs on Theoretical Computer Science 28. Springer-Verlag, 1992.Google Scholar
  20. 20.
    S.C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In Automata Studies, Annals of Mathematics Studies 34, pages 3–41. Princeton University Press, 1956.Google Scholar
  21. 21.
    S. Mauw and G.J. Veltink, editors. Algebraic Specification of Communication Protocols, Cambridge Tracts in Theoretical Computer Science 36. Cambridge University Press, 1993.Google Scholar
  22. 22.
    Meta Software Corporation, Cambridge, Massachusetts, USA. Design/CPN Manual, 1991.Google Scholar
  23. 23.
    R. Milner. A Calculus of Communcating Systems, LNCS 92. Springer-Verlag, 1980.Google Scholar
  24. 24.
    U. Montanari and D. Yankelevich. Combining CCS and Petri Nets via Structural Axioms. Fundamenta Informaticae, 20(1–3):193–229, May 1994.Google Scholar
  25. 25.
    E.-R. Olderog. Petri Nets and Algebraic Calculi of Processes. In APN '87, LNCS 266, pages 196–223. Springer-Verlag, 1987.Google Scholar
  26. 26.
    L. Pomello, G. Rozenberg, and C. Simone. A Survey of Equivalence Notions for Net Based Systems. In APN '92, LNCS 609, pages 410–472. Springer-Verlag, 1992.Google Scholar
  27. 27.
    W. Reisig. Petri Nets: An Introduction, EATCS monographs on Theoretical Computer Science 4. Springer-Verlag, 1985.Google Scholar
  28. 28.
    D. Taubner. Finite Representations of CCS and TCSP Programs by Automata and Petri Nets, LNCS 369. Springer-Verlag, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Twan Basten
    • 1
  • Marc Voorhoeve
    • 1
  1. 1.Department of Computing ScienceEindhoven University of TechnologyThe Netherlands

Personalised recommendations