Advertisement

A refined view of the box algebra

  • Eike Best
  • Maciej Koutny
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 935)

Abstract

This paper presents the operational semantics and the Petri net semantics of a fragment of the box algebra in tutorial style. For the operational semantics, inductive rules for marked expressions are given. For the net semantics, a general mechanism of refinement and relabelling is introduced, using which the connectives of the algebra are defined. A companion paper shows how this mechanism can be extended to handle recursion.

Keywords

Petri nets Process algebra Refinement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.Best, R.Devillers, J.Esparza: General Refinement and Recursion Operators for the Petri Box Calculus. Springer-Verlag, Lecture Notes in Computer Science Vol. 665, 130–140 (1993).Google Scholar
  2. 2.
    E.Best, R.Devillers, J.Hall: The Petri Box Calculus: a New Causal Algebra with Multilabel Communication. Advances in Petri Nets 1992, G.Rozenberg (ed.), Springer-Verlag, Lecture Notes in Computer Science Vol. 609, 21–69 (1992).Google Scholar
  3. 3.
    E.Best, H.Fleischhack, W.Fraczak, R.P.Hopkins, H.Klaudel, E.Pelz: An M-net Semantics of B(PN) 2. Proc. of STRICT'95 (1995).Google Scholar
  4. 4.
    E.Best, R.P.Hopkins: B(PN)2 — a Basic Petri Net Programmming Notation. Proc. of PARLE'93, Springer-Verlag, Lecture Notes in Computer Science Vol. 694, 379–390 (1993).Google Scholar
  5. 5.
    E.Best, M.Koutny: Solving Recursive Net Equations. Proc. of ICALP-95, Springer-Verlag, Lecture Notes in Computer Science (1995).Google Scholar
  6. 6.
    G.Boudol, I.Castellani: Flow Models of Distributed Computations: Event Structures and Nets. Rapport de Recherche, INRIA, Sophia Antipolis (July 1991).Google Scholar
  7. 7.
    R.Devillers: The Synchronisation Operator Revisited for the Petri Box Calculus. Technical Report LIT-290, Laboratoire d'Informatique Théorique, Université Libre de Bruxelles (1994).Google Scholar
  8. 8.
    R.Devillers: S-invariant Analysis of Petri Boxes. Technical Report LIT-273, Laboratoire d'Informatique Théorique, Université Libre de Bruxelles (1993). To appear in Acta Informatica (1995).Google Scholar
  9. 9.
    W.Fraczak, H.Klaudel: A Multi-action Synchronisation Scheme and its Application to the Petri Box Calculus. Proc. of ESDA (Engineering Systems Design and Analysis Conference), 91–100, London (1994).Google Scholar
  10. 10.
    U.Goltz, R.van Glabbeek: Refinement of Actions in Causality Based Models. Springer-Verlag, Lecture Notes in Computer Science Vol.430, 267–300 (1989).Google Scholar
  11. 11.
    M.Koutny, E.Best: Operational Semantics for the Box Algebra. Draft paper (1995).Google Scholar
  12. 12.
    M.Koutny, J.Esparza, E.Best: Operational Semantics for the Petri Box Calculus. Proc. of CONCUR'94 (ed. B.Jonsson and J.Parrow), Lecture Notes in Computer Science Vol.836, Springer-Verlag, 210–225 (1994).Google Scholar
  13. 13.
    R.Milner: Communication and Concurrency. Prentice Hall (1989).Google Scholar
  14. 14.
    E.R.Olderog: Nets, Terms and Formulas. Cambridge Tracts in Theoretical Computer Science 23 (1991).Google Scholar
  15. 15.
    G.Plotkin: A Structural Approach to Operational Semantics. DAIMI Technical Report FN-19, Computer Science Department, University of Århus (1981).Google Scholar
  16. 16.
    W.Reisig: Petri Nets. An Introduction. EATCS Monographs on Theoretical Computer Science Vol. 3, Springer-Verlag (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Eike Best
    • 1
  • Maciej Koutny
    • 2
  1. 1.Institut für InformatikUniversität HildesheimHildesheim
  2. 2.Department of Computing ScienceUniversity of Newcastle upon TyneUK

Personalised recommendations