Advertisement

Dentritic computation in the brain

  • Isabel Barahona da Fonseca
  • J. Barahona da Fonseca
  • J. Simões da Fonseca
Computational Models of Neurons and Neural Nets
Part of the Lecture Notes in Computer Science book series (LNCS, volume 930)

Abstract

Discrete messages formed by action potentials are processed by cell bodies of neurons which act as time/space integrators of synaptic excitation elicited by this potentials. Data from neurophysiological research suggest that dendritic potential waveforms may be processed in dendro-dendritic circuits largely independent from cell bodies. The spatio-temporal arrangement and spatial frequency of dendro-dendritic synapses allow the implementation of convolution and deconvolution algorithms in such dendro-dendritic circuits. Cross correlation with periodic delta functions implemented under the form of periodic ramification of dendritic trees allows the recovery of periodic waveforms processed in dendro-dentritic networks. Considering the size of dendritic circuits which may attain lengths less than a few hundred microns and a conduction velocity which may attain two to four meters per second or more produces an expectation for the frequency of dendritic circuit much above the 1KHz limit for the frequency of cell body and axon signals. Under these conditions coding of neuronal sequenties of action potentials can only be understood taking into account structural and functional active characteristics of dendritic processes.

Key words

Dendritic Networks Neural Computation Graduate Potentials Brain Models Periodic Waveforms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BARAHONA DA FONSECA, J (1985a): Technical Note. Acta Psiq. Port. 31(3).Google Scholar
  2. BARAHONA DA FONSECA, J (1985b): Sistema de Aquisição e Processamento de Potenciais Evocados. Tese de Licenciatura, IST.Google Scholar
  3. BARAHONA DA FONSECA, J; SERRO, J; HORTA, MP; GARCIA FERNANDEZ, I; FERREIRA, MF; SIMÕES DA FONSECA, JL (1990): A Minimal System for the Study of Relationships between Brain Processes and Psychological Events. In F. Pichler, R. Moreno Diaz (Eds) Computer Aided Systems Theory Eurocast '89. Springer-Verlag.Google Scholar
  4. BARAHONA DA FONSECA, Isabel (1991): Os Fenomenos Oscilatorios do EEG como Indicadores de Eventos Psiquicos. M. Sc. Thesis, Fac. of Psychology and CE, Lisbon.Google Scholar
  5. BARAHONA DA FONSECA, Isabel (1993): High Level Implications of Dendro-Dendritic Computation. Communication presented to the Fourth Las Palmas Seminar on Computer Sciences (Dir. R. Moreno Diaz). Univ. De Las Palmas.Google Scholar
  6. BARAHONA DA FONSECA, Isabel, BARAHONA DA FONSECA, J, FERREIRA, MF, SIMÕES DA FONSECA JL (1988): Indicators of Stimulus Free Cognitive States and Their Proper Time Structure. Acta Psiq. Port., 34(2,3,4).Google Scholar
  7. BARAHONA DA FONSECA, Isabel; BARAHONA DA FONSECA, J; SIMÕES DA FONSECA, JL (1991): As Formas de Onda de Fenómenos Eléctricos Periódicos Cerebrais como Indicadores Distintivos de Características Semânticas. Actas das I Jornadas de Estudos de Processos Cognitivos, SPP, Lisbon.Google Scholar
  8. BARAHONA DA FONSECA, Isabel; SIMÕES DA FONSECA JL (In Press): Modos de Simbolização no Sistema Nervoso Central.Google Scholar
  9. GRAUBARD, R; CALVIN, WH (1979): Presynaptic Dendrites: Implications of Spikeless Synaptic Transmission and Dendritic Geometry. Neurosciences, Fourth Study Program, Mit Press, Cambridge Mass:317–331Google Scholar
  10. LEE (1960): Statistical Theory of Communication. J. Wiley, NY.Google Scholar
  11. PEDLEY, TA; TRAUB, RD (1990): Physiological Basis of The EEG. In DD Daly, TA Pedley (Eds): Current Practice of Clinical Electroencephalography Raven Press, NY.Google Scholar
  12. PERKEL, D. H.; BULLOCK (1968): Neural Coding — A Report Based on a NRP Session. Neurosciences Research Program Bulletin (6,3).Google Scholar
  13. SIMÕES DA FONSECA, JL (1967): What is the Purpose of Delay in Nets of Real Neurons. Investigation Progress Report 2B. Centro de Estudos Egas Moniz, Lisboa.Google Scholar
  14. SIMÕES DA FONSECA, JL (1968): Invited Discussion in Symposium on Biocybernetics of the CNS. L. Proctor (Ed) Little Brown, BostonGoogle Scholar
  15. SIMÕES DA FONSECA, JL (1993): Dendro-Dendritic Computation. Communication presented to the Fourth Las Palmas Seminar on Computer Sciences (Dir. R. Moreno Diaz). Univ. De Las Palmas.Google Scholar
  16. SIMÕES DA FONSECA, JL, McCULLOCH WS (1967): Synthesis and Linearization of Non-Linear Feedback Shift Registers — Basis of a Model of Memory. Quarterly Progress Report, 86 Research Laboratory of Electronics, MIT; June, 15, pp 367.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Isabel Barahona da Fonseca
    • 1
  • J. Barahona da Fonseca
    • 2
  • J. Simões da Fonseca
    • 3
  1. 1.Faculty of Psychology of LisbonAlameda da UniversidadeLisboaPortugal
  2. 2.FCT/UNL, Department of Electrical EngineeringQuinta da TorreMonte da CaparicaPortugal
  3. 3.Faculty of Medicine of LisbonLisboaPortugal

Personalised recommendations