Skip to main content

A review on the stochastic firing behaviour of real neurons and how it can be modelled

  • Computational Models of Neurons and Neural Nets
  • Conference paper
  • First Online:
From Natural to Artificial Neural Computation (IWANN 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 930))

Included in the following conference series:

Abstract

The types of spike trains recorded in real neurons from different parts of the brain, can either be completely random or bursty. Certainly, at very high firing rates regular spike trains are observed. This paper examines the neurobiological spike trains observed experimentally and analytically and presents how they can be modelled and accounted for by using the biologically inspired Temporal Noisy-Leaky Integrator (TNLI) neuron model, with partial reset. The complete randomness or high firing variability, can be achieved for certain input parameter values at high firing rates, which results from the dendritic temporal summation of postsynaptic responses and the use of random synaptic inputs. It is also demonstrated that bursting behaviour can indeed be achieved, using the TNLI, which is a result of the use of random synapses and distal inputs. The firing variability is demonstrated by calculating the Coefficient of Variation (Cv) of the interspike interval (ISI) distribution and by observing the corresponding ISI histograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baranyi, A., Szente, M. B. and Woody C. D. (1993). Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. J. of Neurophysiol., 69, 6, 1850–1864.

    Google Scholar 

  • Barbi, M. and Ferdeghini, E. M. (1980). Relevance of the single ommatidium performance in determining the oscillatory response of the Limulus retina. Biol. Cypern. 39, 45–51.

    Google Scholar 

  • Barlow, R.B. and Fraioli, A. J. (1978). Inhibition in the Limulus lateral eye in situ. J. of Gen. Physiol., 71, 574–592.

    Google Scholar 

  • Bressloff, P. C. and Taylor, J. G. (1992). Temporal sequence storage capacity of time-summating neural networks. J. of Physics A: Math. Gen., 25, 833–842.

    Google Scholar 

  • Bugmann, G. (1990). Irregularity of natural spike trains simulated by an integrate-and-fire neuron. In: Extended Abstracts,3rd Int. Symposium on Bioelectronic and Molecular Electronic Devices. R & D Association for Future Electron Devices, Kobe, Japan, 105–106.

    Google Scholar 

  • Bugmann, G. (1991). Summation and multiplication: two distinct operation domains of leaky-integrate-and-fire neurons. Network, 2, 489–509.

    Google Scholar 

  • Burns, B. D. and Webb, A. C. (1976). The spontaneous activity of neurons in the cat's visual cortex. Proc. Royal Soc. London, B 194, 211–223.

    Google Scholar 

  • Christodoulou, C., Bugmann, G., Taylor, J. G. and Clarkson, T. G. (1992). An extension of the Temporal Noisy-Leaky Integrator neuron and its potential applications. Proc. of the Int. Joint Conf. on Neural Networks, Beijing, III, 165–170.

    Google Scholar 

  • Christodoulou, C., Bugmann, G., Clarkson T. G. and Taylor J. G. (1993). The Temporal Noisy-Leaky Integrator neuron with additional inhibitory inputs. New Trends in Neural Computation, Lecture Notes in Computer Science, ed. by J. Mira, J. Cabestany and A. Prieto, Springer-Verlag, 686, 465–470.

    Google Scholar 

  • Clarkson, T. G., Ng, C. K., Gorse, D and Taylor, J. G. (1992). Learning Probabilistic RAM Nets using VLSI structures. IEEE Trans. on Computers, 41 (12), 1552–1561.

    Google Scholar 

  • Clarkson, T. G., Ng, C. K. and Guan, Y. (1993). The pRAM: An adaptive VLSI chip. IEEE Trans.on Neural Networks, 4 (3), 408–412.

    Google Scholar 

  • Hanson, F. B. and Tuckwell, H. C. (1983). Diffusion approximation for neuronal activity including synaptic reversal potentials. J. of Theor. Neurobiol. 2, 127–153.

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A F. (1952). A quantitative description of membrane current and its application to conduction and excitation in a nerve. J. of Physiol. (London) 117, 500–544.

    Google Scholar 

  • Hopfield, J. J. (1982). Neural Networks and physical systems with emergent collective computational activities. Proc. Natl. Acad. Sci., USA, 79, 2554–2558.

    Google Scholar 

  • Jensen, M.S., Azouz, R. and Yaari, Y. (1994). Variant Firing Patterns in Rat Hippocampal Pyramidal Cells Modulated by Extracellular Potassium. J. of Neurophysiol., 71, 3, 831–839.

    Google Scholar 

  • Katz, B. (1969). The release of Neural Transmitter substance. Liverpool University Press, Liverpool.

    Google Scholar 

  • Keilson, J. (1979). Markov Chain Models — Rarity and Exponentiality. Applied Mathematical Sciences, 28. Springer-Verlag.

    Google Scholar 

  • Knierim, J. and Van Essen, D. (1992). Neuronal Responses to static textual patterns in area V1 of the alert macaque monkey. J. Neurophysiol., 67, 961–980.

    PubMed  Google Scholar 

  • Knight, B. W. (1972). Dynamics of Encoding in a Population of Neurons. J. of Gen. Physiol., 59, 734–766.

    Google Scholar 

  • Kohn, A. F. (1989). Dendritic Transformations on Random Synaptic Inputs as Measured From a Neuron's Spike Train — Modelling and Simulation. IEEE Trans. on Biomedical Engineering, 36, 44–54.

    Google Scholar 

  • Lamarre, Y., Filion, M. and Cordeau, J. P. (1971). Neuronal discharges of the ventrolateral nucleus of the thalamus during sleep and wakefulness in the cat. I. Spontaneous Activity. Exp. Brain Res., 12, 480–498.

    PubMed  Google Scholar 

  • Lánský, P. and Musila, M. (1991). Variable initial depolarization in Stein's neuronal model with synaptic reversal potentials. Biol. Cybern., 64, 285–291.

    PubMed  Google Scholar 

  • Lánský, P. and Smith, C. E. (1989). The effect of a random initial condition in neural first-passage-time models. Math. Biosci., 93, 191–215.

    PubMed  Google Scholar 

  • Lapique, L. (1907). Reserches quantatives sur l' excitation électrique des nerfs traitée commeune polarization. J. Physiol. Pathol. Gen., 9, 620–635.

    Google Scholar 

  • Little, W.A. (1974). The existence of persistent States in the brain. Math. Biosci., 19, 101–120.

    Google Scholar 

  • Mason, A., Nicoll, A. and Stratford, K. (1991). Synaptic Transmission between Individual Pyramidal Neurons of the Rat Visual Cortex in vitro. J. of Neurosci., 11, 72–84.

    Google Scholar 

  • McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 5, 115–133.

    Google Scholar 

  • Nakahama, H., Suzuki, H., Yamamoto, M., Aikawa, S. and Nishioka, S. (1968). A Statistical Analysis of Spontaneous Activity of Central Single Neurons. Physiol. Behav., 3, 745–752.

    Google Scholar 

  • Newsome, W., Britten, K., Movshon, J. A. and Shadlen, M. (1989). Single neurons and the perception of motion. In: Neural Mechanisms of visal perception (Man-Kit Lam D, Gilbert C, eds). The Woodlands, TX: Portofolio, 171–198.

    Google Scholar 

  • Nagai, T. and Ueda, K. (1981). Stochastic properties of gustatory impulse discharges in rat chorda tympani fibers. J. of Neurophysiol, 45, 574–592.

    Google Scholar 

  • Perkel, D. H., Gerstein, G. L. and Moore, G. P. (1967). Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys. J. 7: 391–418.

    PubMed  Google Scholar 

  • Pfeiffer, R. R. and Kiang, N. Y-S. (1965). Spike discharge patterns of spontaneous and continuously simulated activity in the cochlear nucleus of anesthetized cats. Biophys. J., 5, 301–316.

    Google Scholar 

  • Pun, R. Y. K., Neale, E. A., Cuthrie, P. B. and Nelson, P. G. (1986). Active and Inactive Central Synapses in the Cell Culture. J. of Neurophysiol., 56, (5), 1242–1256.

    Google Scholar 

  • Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modelling. Ed. by Reiss, R. F., Stanford, Stanford University Press, 73–77.

    Google Scholar 

  • Ramirez, J-M. and Pearson, K. G. (1993). Alteration of bursting properties in interneurons during locust flight. J. of Neurophysiol., 70, 5, 2148–2160.

    Google Scholar 

  • Redman, S. (1986). Monosynaptic Transmission in the spinal cord. News in Physiol. Sci. 1, 171–174.

    Google Scholar 

  • Rodieck, R. W., Kiang, N. Y-S. and Gerstein, G. L. (1962). Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J., 2, 351–368.

    PubMed  Google Scholar 

  • Rospars, J. P. and Lánský, P. (1993). Stochastic model neuron without resetting of dendritic potential: application to the olfactory system. Biol. Cybern., 69, 283–294.

    PubMed  Google Scholar 

  • Shepherd, G. M. and Koch, C. (1990). Appendix: Dendritic Electrotonus and Synaptic Integration. The Synaptic Organisation of the Brain, (3rd edition), ed. by Shepherd, G. M., Oxford University Press.

    Google Scholar 

  • Smith, D. R. and Smith G. K. (1965). A statistical analysis of the continuous activity of single cortical neurons in the cat unanesthetized isolated forebrain. Biophys. J., 5, 47–74.

    Google Scholar 

  • Softky, W. R. and Koch, C. (1993). The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSP's. J. of Neurosci., 13 (1), 334–530.

    Google Scholar 

  • Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophys. J., 5, 173–195.

    Google Scholar 

  • Tuckwell, H. C. (1979). Synaptic transmission in a model for stochastic neural activity. J. of Theor. Biol., 77, 65–81.

    Google Scholar 

  • Wilbur, W. J. and Rinzel, J. (1983). A theoretical basis for large Coefficient of Variation and biomodality in neuronal interspike interval distributions. J. of Theor. Biol. 105, 345–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Francisco Sandoval

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christodoulou, C., Clarkson, T. (1995). A review on the stochastic firing behaviour of real neurons and how it can be modelled. In: Mira, J., Sandoval, F. (eds) From Natural to Artificial Neural Computation. IWANN 1995. Lecture Notes in Computer Science, vol 930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59497-3_179

Download citation

  • DOI: https://doi.org/10.1007/3-540-59497-3_179

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59497-0

  • Online ISBN: 978-3-540-49288-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics