Advertisement

Local accumulation of persistent activity at synaptic level: Application to motion analysis

  • M. A. Fernández
  • J. Mira
  • M. T. López
  • J. R. Álvarez
  • A. Manjarrés
  • S. Barro
Computational Models of Neurons and Neural Nets
Part of the Lecture Notes in Computer Science book series (LNCS, volume 930)

Abstract

Usually we have assumed that the neuron was the “atom” in the architecture of the Neurons System. However, there is such a wealth of drendo-dendritic connections and synaptic mechanisms that it seems essential to distinguish different styles of analog microcomputation.

In this paper we look inside the synaptic structure after a local process of accumulation of persistent activity and their discharge towards the spike trigger zone. To illustrate the usefulness of this information processing behaviour in image motion analysis, and architecture for extraction and selection of length velocity ratio invariants (LVR) is proposed, simulated and partially evaluated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Calvin & Graubard, 1979]
    Calvin, W.H. and Graubard, K. “Styles of Neural Computation”. In Schmitt and Worden, eds., The Neurosciences Fourth Study Program. pp. 513–524. The MIT Press, 1979.Google Scholar
  2. [Fernandez & Mira, 1992]
    Fernandez, M.A.; Mira, J.; “Permanence Memory: A System for Real Time Motion Analysis in Image Sequences”. IAPR Workshop On Machine Vision Applications; pp 249–252; Mva'92. Tokio. 1992.Google Scholar
  3. [Fernandez & Mira, 1994]
    Fernandez, M. A.; Mira, J.; “Arquitectura Neuronal Paralela para la Deteccion de Niveles de Gris con Movimiento en Secuencias de Imagen” Fernadez et al. (eds.) Nuevas Tendencias En La Informatica: Arquitecturas Paralelas Y Programacion Declarativa; pp 165–183;. Servicio de publicaciones de la Universidad de Castilla La Mancha. 1994.Google Scholar
  4. [Graubard & Calvin, 1979]
    Graubard, K. and Calvin, W.H.“Presynaptic Dendrites: Implications of Spikeless Synaptic Transmission and Dendritic Geometry”. In Schmitt and Worden, eds., The Neurosciences Fourth Study Program. pp. 317–331. The MIT Press, 1979.Google Scholar
  5. [Koch, 1990]
    Koch, C. “Biophysics of Computation: Towards the Mechanisms Underlying Information Processing in Single Neurons”. In E.L. Schwartz, ed. Computational Neurosciences, pp. 97–113. The MIT Press, 1990.Google Scholar
  6. [Mira et al., 1993]
    Towards More Realistic Self-contained Models of Neurons: High-order, Recurrence and Local Learning. In J. Mira et al (eds): New Trend in Neural Computation. LNCS, 686, pp. 55–62. Berlin, Springer-Verlag, 1993.Google Scholar
  7. [Rall & Segev, 1990]
    Rall, W. and Segev, I. “Dendritic Branches, Spines, Synapses, and Excitable Spine Clusters”. In E.L. Schwartz, ed. Computational Neurosciences, pp. 69–81. The MIT Press, 1990.Google Scholar
  8. [Simpson, 1988]
    Simpson, W.; “Depth Discrimination from Optical Flow”. Perception, Vol. 17; Pp 497–512;. 1988PubMedGoogle Scholar
  9. [Zhou & Chellappa, 1990]
    Zhou, Y. T.; Chellappa, R.; “A Network for Motion Perception”. Proc. IEEE/Inns Int. Joint Conf. Neural Network, Vol. II June; pp 875–884; IEEE. San Diego Ca., 1990Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. A. Fernández
    • 1
  • J. Mira
    • 2
  • M. T. López
    • 1
  • J. R. Álvarez
    • 2
  • A. Manjarrés
    • 2
  • S. Barro
    • 3
  1. 1.Departamento de InformáticaUniversidad de Castilla la ManchaAlbaceteSpain
  2. 2.Dpto. Informática y Automática. Facultad de CienciasUNEDMadridSpain
  3. 3.Dpto. de Electronica y Computación. Facultad de FísicaUniversidad de Santiago de CompostelaSpain

Personalised recommendations