Seeing in the dark with artificial bats

  • Kourosh Teimoorzadeh
5. Robotics and Emulation of Animal Behavior
Part of the Lecture Notes in Computer Science book series (LNCS, volume 929)


We are providing a simulation model of the echolocation phenomenon and biological sonar of bats during night flight. Our simulations are based on stationary or mobile obstacle avoidance and prey recognition (moths) by the artificial bats. Echolocation is the navigation system adopted by bats, dolphins, killer whales, as well as the majority of autonomous mobile robots (AMR).

To begin with, we will give a detailed description of our model's sonar configuration. We will then present our artificial biotope NetFreeFly inside which our bats manoeuvre in relation to a specific scenario. This biotope allows the study of bat behaviour during the phases of form recognition, obstacle avoidance, and prey capture. Lastly, we will describe the modelling of a memorisation circuit of sensory expressions based on feedback and association of sensory phenomena. This circuit reinforces the mental representation of acoustic images coming from the aural perception of a bat model.


animal behavior bat echolocation biological sonar acoustic perception adaptive sensing mobile agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Busnel and J. Fish, Animal Sonar Systems, Plenum Press, New York, 1967.Google Scholar
  2. [2]
    J. Byrne, Bat Radar is Fine if you Just After Bugs, 1965.Google Scholar
  3. [3]
    D. A. Cahlander, The Determination of Distance by Echolocation Bats, Nature London, 1964. (a)Google Scholar
  4. [4]
    D. A. Cahlander, Echolocation with Wide-Band Waveforms: Bat Sonar Signals, Tech. Rep. Lincoln Lab MIT, 1964. (b)Google Scholar
  5. [5]
    R. Chatila, Système de Navigation pour un Robot Mobile Autonome: modélisations et processus décisionnels, Thèse: Université Paul Sabatier, Toulouse France, 1981.Google Scholar
  6. [6]
    D. Cliff and S. Bullock, Exploration in Evolutionary robotics, 2, p. 73, MIT Press, 1993.Google Scholar
  7. [7]
    F. Crick and C. Koch, Towards a Neurobiological Theory of Consciousness in Seminars in the Neurosciences, vol. 2, p. 263, 1990.Google Scholar
  8. [8]
    R. Dawkins, The Blind Watchmaker, Penguin Books, 1988.Google Scholar
  9. [9]
    W. H. Dobelle, Current Status of Reaserch on Providing Sight to the Blind by Electrical stimulation of the Brain, p. 289, Visual Impairement and Blindness, 1977.Google Scholar
  10. [10]
    M. Fenton, Just Bats Brock Fenton, University of Torontw Press, London, 1983.Google Scholar
  11. [11]
    M. Fenton, Communication in the Chiropteres, p. 137, Bloomington: Indiana University Press, 1985.Google Scholar
  12. [12]
    D. Griffin, Listening in the Dark: the Acoustic Orientation of Bats and Men, Yale University Press, New Haven, 1958.Google Scholar
  13. [13]
    D. Griffin and D. Thompson, High Altitude Echolocation of Insects by Bats, p. 303, Behavior Ecol. Soc., 1982.Google Scholar
  14. [14]
    D. Griffin, F. Webster, and C. Michael, The Echolocation of Flying Insect by Bats, p. 141, Animal Behavior, 1960.Google Scholar
  15. [15]
    L. Kay, A Plausible Explanation of the Bat's Echolocation Acuity Animal Behavior, 10, p. 34, Animal Behavior, 1962.Google Scholar
  16. [16]
    L. Kay, Auditory Perception and its Relation to Ultrasonic Blind Guidance Aids, 24, p. 309, Brit. I.R.E., 1962.Google Scholar
  17. [17]
    L. Kay, A Plausible Explanation of the Bats Echo-Locating Acuity, 10, Animal Behaviour, 1962.Google Scholar
  18. [18]
    L. Kay and M. A. Do, Resolution in an Artificially Generated Multiple Object Auditory Space Using New Auditory Sensations, 36, p. 9, Acoustica, 1977.Google Scholar
  19. [19]
    J. Klauder and A. Price, The Theory and Design of Chirp Radars, p. 745, Bell Syst.Tech, 1960.Google Scholar
  20. [20]
    A. Meystel, Autonomous Mobile Robots: Vehicles with Cognitive Control, World Scientific, Singapore, 1991.Google Scholar
  21. [21]
    A. Meystel, On the Phenomenon of High Redundancy in Robotic Perception, 158, Springer-Verlag, 1990.Google Scholar
  22. [22]
    A. Meystel, Planning in the Anthropomorphical Machine Intelligence, p. 648, Proc of the IEEE int. Conf. on Cybernetics and Society, Seattl WA, 1982.Google Scholar
  23. [23]
    A. Meystel and R. Chavez, Structure of Intelligence for an Autonomous, Proc. of the IEEE Int. Conf. on Robotics, Atlanta GA, 1984.Google Scholar
  24. [24]
    J. Pye, Echolocation Signals and Echoes in Air, Plenum (Animal Sonar Systems), New York, 1980.Google Scholar
  25. [25]
    J. Pye, Techniques for Studying Ultrasound, p. 39, Academic Press, New York, 1983. (a)Google Scholar
  26. [26]
    J. Pye, Echolocation and Counter Measures, Academic Press, New York, 1983. (b)Google Scholar
  27. [27]
    J. Pye, Perception of Distance in Animal Echolocation, p. 362, Nature, London, 1961.Google Scholar
  28. [28]
    Rovisec, International Conference on Robot Vision and Sensory Controls, IFS. Springer-Verlag, Zurich, 1988.Google Scholar
  29. [29]
    H. Salvayre, Les Chauve-Souris, Balland, Paris, 1980.Google Scholar
  30. [30]
    H. Schone, Spatial Orientation: The Spatial Control of Behavior in Animal and Man, Princeton University, N.J., 1984.Google Scholar
  31. [31]
    J. A. Simmons, The Processing of Sonar Echoes by Bats, p. 695, Animal Sonar System, 1967.Google Scholar
  32. [32]
    J. A. Simmons, Response of the Doppler Echolocation system in the bat, p. 672, Acoust.Soc.Amer, 1974.Google Scholar
  33. [33]
    J. A. Simmons, Perception of Echo Phase in bat Sonar, p. 1336, Science, 1979. (b)Google Scholar
  34. [34]
    J. A. Simmons and R. Stein, Acoustic Imaging in Bat Sonar: Echolocation and the Evolution of Echolocation, Comp. Physiol., 1979. (a)Google Scholar
  35. [35]
    N. Suga, Further Studies on the Peripherical Auditory System of “CF-FM” Bats Specialized for the Fine Frequency Analysis of Doppler-Shifted Echoes, p. 207, Exp. Biol., 1977.Google Scholar
  36. [36]
    N. Suga, Functional Properties of Auditory Neurones in the Cortex of Echolocation Bats, p. 671, Physiol., 1965.Google Scholar
  37. [37]
    N. Suga, Parallel-Hierarchical Processing of Biosonar Information, Plenum Press (Animal Sonar Systems), New York, 1989.Google Scholar
  38. [38]
    N. Suga, Peripherical Control of Acoustic Signal in the Auditory System of Echolocation Bats, p. 277, Exp. Biol., 1975.Google Scholar
  39. [39]
    N. Suga, Le Système Sonar des Chauve-souris, Pour la Science, 1990.Google Scholar
  40. [40]
    K. Teimoorzadeh, La modélisation du phénomène d'écholocation chez les chauve-souris. Mémoire de Maîtrise, Saint-Denis France, 1993.Google Scholar
  41. [41]
    K. Teimoorzadeh, La modélisation d'une chauve-souris artificielle. Mémoire de DEA, Saint-Denis France, 1994.Google Scholar
  42. [42]
    F. Webster and O. Brazier, Experimental Studies on Target Detection Evaluation and Interception by Echolocating bats, U.S.A.F Aerospace Medical Div., 1965.Google Scholar
  43. [43]
    F. A. Webster, Some Acoustical Differences Between Bats and Men: Sensory Devices for the Blind, London, 1963.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Kourosh Teimoorzadeh
    • 1
  1. 1.Laboratoire d'Intelligence Artificielle Université Paris 8Saint-Denis Cedex 02France

Personalised recommendations