Skip to main content

Adaptation and the modular design of organisms

  • 3. Adaptive and Cognitive Systems
  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 929))

Included in the following conference series:

Abstract

In this paper the implications of the theory of evolutionary computation for evolutionary biology are explored. It is claimed that the concept of “representations” is particularly useful to understand the evolution of complex adaptation and the origin of the modular design of higher organisms. Modularity improves the adaptability of complex adaptive systems, but arises most likely as a side effect of adaptive evolution rather than being an adaptation itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akam, M., I. Dawson and G. Tear 1988. Homeotic genes and the control of segment diversity. Development 104: 123–133.

    Google Scholar 

  • Alberch, P. 1983. Morphological variation in the neotropical salamander genus Bolitoglossa. Evolution 37: 906–919.

    Google Scholar 

  • Altenberg, L. 1994. The evolution of evolvability. in press in Advances in Genetic Programming. J. K. E. Kinnear, ed. Cambridge, MIT Press.

    Google Scholar 

  • Altenberg, L. and M. W. Feldman 1987. Selection, generalized transmission, and the evolution of modifier genes. Genetics 117: 559–572.

    Google Scholar 

  • Banzhaf, W. 1994. Genotype-phenotype mapping and neutral variation — A case study in genetic programming. in Parallel Problem Solving from Nature — PPSN III. Y. Davidor, H.-P. Schwefel and R. MÄnner, ed. Berlin, Springer.

    Google Scholar 

  • Bonner, J. T. 1988. The Evolution of Complexity. Princeton, NJ., Princeton University Press.

    Google Scholar 

  • Bossert, W. 1967. Mathematical optimization: are there abstract limits on natural selection? in Mathematical Challanges to the Neo-Darwinian intepretation of evolution. P. S. Moorhead and M. Kaplan, ed. Philadelphia, Wistar Inst. Press.

    Google Scholar 

  • Bremermann, H. J., M. Rogson and S. Salaff 1966. Global properties of evolution processes. in Natural Automata and Useful Simulations. H. H. Pattee, ed. Washington, DC, Macmillan Press.

    Google Scholar 

  • Bulmer, M. G. 1980. The Mathematical Theory of Quantitative Genetics. Oxford, Clarendon Press.

    Google Scholar 

  • Bürger, R., G. P. Wagner and F. Stettinger 1989. How much heritable variation can be maintained in finite populations by mutation-selection balance? Evolution 43: 1748–1766.

    Google Scholar 

  • Buss, L. W. 1987. The Evolution of Individuality. New York, Columbia University Press.

    Google Scholar 

  • Darwin, C. R. 1859. The Origin of Species. London, John Murray.

    Google Scholar 

  • Eden, M. 1967. Inadequacies of neo-darwinian evolution as a scientific theory in Mathematical Challanges to the Neo-Darwinian intepretation of evolution. P. Moorhead and M. Kaplan, ed. Philadelphia, Wistar Inst. Press.

    Google Scholar 

  • Endler, J. A. 1986. Natural Selection in the Wild. Princeton, New Jersey, Princeton University Press.

    Google Scholar 

  • Fontana, W., and L. W. Buss 1994. The arrival of the fittest. Bull. Math. Biol., 56: 1–64.

    Google Scholar 

  • Forrest, S. and M. Mitchell 1993. Towards a stronger building-block hypothesis: effects of relative building-block fitness on GA performance. 109-126 in Foundations of Genetic Algorithms. C. D. Whitley, ed. Palo Alto, Morgon Kaufman.

    Google Scholar 

  • Frazzetta, T. H. 1975. Complex Adaptations in Evolving Populations. Sunderland, MA., Sinauer Ass. Inc.

    Google Scholar 

  • Gimelfarb, A. 1989. Genotypic variation for a quantitative character maintained under stabilizing selection without mutation: Epistasis. Genetics 123: 217–227.

    Google Scholar 

  • Goodman, N. 1955. Fact, Fiction, Forecast. Indianapolis, Hackett Publ. Co.

    Google Scholar 

  • Gould, S. J. 1977. Ontogeny and Phylogeny. Cambridge, MA., Harvard University Press.

    Google Scholar 

  • Holland, J. H. 1992. Adaptation in Natural and Artificial Systems. Cambridge, MA, MIT Press.

    Google Scholar 

  • Jones, T. and G. J. E. Rawlins 1993. Reverse hillcliming, genetic algorithms and the busy beaver problem. 70-75 in Proceedings of the Fifth International Conference on Genetic Algorithms. S. Forrest, ed. San Mateo, CA, Morgan Kaufmann.

    Google Scholar 

  • Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA., MIT Press.

    Google Scholar 

  • Lewontin, R. C. 1970. The units of selection. Ann. Rev. Ecol. System. 1: 1–18.

    Google Scholar 

  • Maynard-Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campell, B. Goodwin, R. Lande, D. Raup and L. Wolpert 1985. Developmental constraints and evolution. Quart. Rev. Biol. 60: 265–287.

    Google Scholar 

  • Müller, G. B. and G. P. Wagner 1991. Novelty in Evolution: Restructuring the Concept. Annu. Rev. Ecol. Syst. 22: 229–256.

    Google Scholar 

  • Needham, J. 1933. On the dissociability of the fundamental processes in ontogenesis. Biol. Rev. 8: 180–223.

    Google Scholar 

  • Price, G. R. 1969. Selection and covariance. Nature 227: 520–521.

    Google Scholar 

  • Raff, R. A. 1983. Embryos, Genes, and Evolution. New York, Macmillan Publishing Co.

    Google Scholar 

  • Raff, R. A. In press. The shape of life. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Ray, T. S. 1992. An approach to the synthesis of life. in Artificial Life II. C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen, ed. Santa Fe, NM, Santa Fe Institute.

    Google Scholar 

  • Rechenberg, I. 1973. Evolutionsstrategie. Stuttgart, Friedrich Frommann Verlag.

    Google Scholar 

  • Rendel, J. M. 1967. Canalization and Gene Control. New York, Logos Press, Academic Press.

    Google Scholar 

  • Riedl, R. 1975. Die Ordnung des Lebendigen. Systembedingungen der Evolution. Hamburg und Berlin, Verlag Paul Parey.

    Google Scholar 

  • Rienesl, J. and G. P. Wagner 1992. Constancy and change of basipodial variation patterns: a comparative study of crested and marbled newts — Triturus cristatus, Triturus marmoratus — and their natural hybrids. J. Evol. Biol. 5: 307–324.

    Google Scholar 

  • Scharloo, W. 1988. Selection on morphological patterns. 230-520 in Population Genetics and Evolution. G. de Jong, ed. Berlin, Spinger Verl.

    Google Scholar 

  • Scharloo, W. 1987. Constraints in selection response. 125-149 in Genetic Constraints on Adaptive Evolution. V. Loeschke, ed. Berlin, Spinger Verl.

    Google Scholar 

  • Scharloo, W. 1991. Canalization: Genetic and developmental aspects. Ann. Rev. Ecol. Syst. 22: 65–93.

    Google Scholar 

  • Schmalhausen, I. I. 1949. Factors of Evolution. The theory of stabilizing selection. Chicago and London, University of Chicago Press.

    Google Scholar 

  • Schwefel, H.-P. 1981. Numerical Optimization of Computer Models. Chichester, Wiley.

    Google Scholar 

  • Simon, H. A. 1965. The architecture of complexity. General Systems 10: 63–73.

    Google Scholar 

  • Stearns, S. C. 1993. The evolutionary links between fixed and variable traits. Acta Paleont. Polonica 38: 1–17.

    Google Scholar 

  • Stearns, S. C., M. Kaiser and T. J. Kawecki 1995. The differential canalization of fitness components against environmental perturbations in Drosophila melanogaster. J. Evol. Biol. submitted

    Google Scholar 

  • Stebbins, G. L. 1974. Flowering Pants. Evolution Above the Species Level. Cambridge, MA, Belknap Press.

    Google Scholar 

  • Turelli, M. 1988. Phenotypic evolution, constant covariances, and the maintenance of additive variance. Evolution 42: 1342–1347.

    Google Scholar 

  • Vermeij, G. J. 1970. Adaptive versatility and skeleton construction. Amer. Nat. 104: 253–260.

    Google Scholar 

  • Waddington, C. H. 1957. The Strategy of the Genes. New York, MacMillan Co.

    Google Scholar 

  • Wagner, A., G. P. Wagner and P. Similion 1994. Epistasis can facilitate the evolution of reproductive isolation by peak shifts: a two-locus two-allele model. Genetics 138: 533–545.

    Google Scholar 

  • Wagner, G. P. 1981. Feedback selection and the evolution of modifiers. Acta Biotheoretica 30: 79–102.

    Google Scholar 

  • Wagner, G. P. 1989a. Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics 122: 223–234.

    Google Scholar 

  • Wagner, G. P. 1989b. The origin of morphological characters and the biological basis of homology. Evolution 43: 1157–1171.

    Google Scholar 

  • Wagner, G. P. 1989c. The biological homology concept. Ann. Rev. Ecol. Syst. 20: 51–69.

    Google Scholar 

  • Wagner, G. P. 1995. The biological role of homologues: A building block hypothesis. N. Jb. Geol. PalÄont. Abh. 19: 279–288.

    Google Scholar 

  • Wagner, G. P. and R. Bürger 1985. On the evolution of dominance modifiers II: a non-epuilibrium approach to the evolution of genetic systems. J. theor. Biol. 113:475–500.

    Google Scholar 

  • Weiss, K. M. 1990. Duplication with variation: Metameric logic in evolution from genes to morphology. Yearbook of Physical Anthropology 33: 1–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Federico Morán Alvaro Moreno Juan Julián Merelo Pablo Chacón

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wagner, G.P. (1995). Adaptation and the modular design of organisms. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds) Advances in Artificial Life. ECAL 1995. Lecture Notes in Computer Science, vol 929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59496-5_308

Download citation

  • DOI: https://doi.org/10.1007/3-540-59496-5_308

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59496-3

  • Online ISBN: 978-3-540-49286-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics