Adaptation and the modular design of organisms

  • Günter P. Wagner
3. Adaptive and Cognitive Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 929)


In this paper the implications of the theory of evolutionary computation for evolutionary biology are explored. It is claimed that the concept of “representations” is particularly useful to understand the evolution of complex adaptation and the origin of the modular design of higher organisms. Modularity improves the adaptability of complex adaptive systems, but arises most likely as a side effect of adaptive evolution rather than being an adaptation itself.


Pleiotropic Effect Complex Adaptation Complex Adaptive System Character Complex Genetic Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akam, M., I. Dawson and G. Tear 1988. Homeotic genes and the control of segment diversity. Development 104: 123–133.Google Scholar
  2. Alberch, P. 1983. Morphological variation in the neotropical salamander genus Bolitoglossa. Evolution 37: 906–919.Google Scholar
  3. Altenberg, L. 1994. The evolution of evolvability. in press in Advances in Genetic Programming. J. K. E. Kinnear, ed. Cambridge, MIT Press.Google Scholar
  4. Altenberg, L. and M. W. Feldman 1987. Selection, generalized transmission, and the evolution of modifier genes. Genetics 117: 559–572.Google Scholar
  5. Banzhaf, W. 1994. Genotype-phenotype mapping and neutral variation — A case study in genetic programming. in Parallel Problem Solving from Nature — PPSN III. Y. Davidor, H.-P. Schwefel and R. MÄnner, ed. Berlin, Springer.Google Scholar
  6. Bonner, J. T. 1988. The Evolution of Complexity. Princeton, NJ., Princeton University Press.Google Scholar
  7. Bossert, W. 1967. Mathematical optimization: are there abstract limits on natural selection? in Mathematical Challanges to the Neo-Darwinian intepretation of evolution. P. S. Moorhead and M. Kaplan, ed. Philadelphia, Wistar Inst. Press.Google Scholar
  8. Bremermann, H. J., M. Rogson and S. Salaff 1966. Global properties of evolution processes. in Natural Automata and Useful Simulations. H. H. Pattee, ed. Washington, DC, Macmillan Press.Google Scholar
  9. Bulmer, M. G. 1980. The Mathematical Theory of Quantitative Genetics. Oxford, Clarendon Press.Google Scholar
  10. Bürger, R., G. P. Wagner and F. Stettinger 1989. How much heritable variation can be maintained in finite populations by mutation-selection balance? Evolution 43: 1748–1766.Google Scholar
  11. Buss, L. W. 1987. The Evolution of Individuality. New York, Columbia University Press.Google Scholar
  12. Darwin, C. R. 1859. The Origin of Species. London, John Murray.Google Scholar
  13. Eden, M. 1967. Inadequacies of neo-darwinian evolution as a scientific theory in Mathematical Challanges to the Neo-Darwinian intepretation of evolution. P. Moorhead and M. Kaplan, ed. Philadelphia, Wistar Inst. Press.Google Scholar
  14. Endler, J. A. 1986. Natural Selection in the Wild. Princeton, New Jersey, Princeton University Press.Google Scholar
  15. Fontana, W., and L. W. Buss 1994. The arrival of the fittest. Bull. Math. Biol., 56: 1–64.Google Scholar
  16. Forrest, S. and M. Mitchell 1993. Towards a stronger building-block hypothesis: effects of relative building-block fitness on GA performance. 109-126 in Foundations of Genetic Algorithms. C. D. Whitley, ed. Palo Alto, Morgon Kaufman.Google Scholar
  17. Frazzetta, T. H. 1975. Complex Adaptations in Evolving Populations. Sunderland, MA., Sinauer Ass. Inc.Google Scholar
  18. Gimelfarb, A. 1989. Genotypic variation for a quantitative character maintained under stabilizing selection without mutation: Epistasis. Genetics 123: 217–227.Google Scholar
  19. Goodman, N. 1955. Fact, Fiction, Forecast. Indianapolis, Hackett Publ. Co.Google Scholar
  20. Gould, S. J. 1977. Ontogeny and Phylogeny. Cambridge, MA., Harvard University Press.Google Scholar
  21. Holland, J. H. 1992. Adaptation in Natural and Artificial Systems. Cambridge, MA, MIT Press.Google Scholar
  22. Jones, T. and G. J. E. Rawlins 1993. Reverse hillcliming, genetic algorithms and the busy beaver problem. 70-75 in Proceedings of the Fifth International Conference on Genetic Algorithms. S. Forrest, ed. San Mateo, CA, Morgan Kaufmann.Google Scholar
  23. Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA., MIT Press.Google Scholar
  24. Lewontin, R. C. 1970. The units of selection. Ann. Rev. Ecol. System. 1: 1–18.Google Scholar
  25. Maynard-Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campell, B. Goodwin, R. Lande, D. Raup and L. Wolpert 1985. Developmental constraints and evolution. Quart. Rev. Biol. 60: 265–287.Google Scholar
  26. Müller, G. B. and G. P. Wagner 1991. Novelty in Evolution: Restructuring the Concept. Annu. Rev. Ecol. Syst. 22: 229–256.Google Scholar
  27. Needham, J. 1933. On the dissociability of the fundamental processes in ontogenesis. Biol. Rev. 8: 180–223.Google Scholar
  28. Price, G. R. 1969. Selection and covariance. Nature 227: 520–521.Google Scholar
  29. Raff, R. A. 1983. Embryos, Genes, and Evolution. New York, Macmillan Publishing Co.Google Scholar
  30. Raff, R. A. In press. The shape of life. University of Chicago Press, Chicago, IL.Google Scholar
  31. Ray, T. S. 1992. An approach to the synthesis of life. in Artificial Life II. C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen, ed. Santa Fe, NM, Santa Fe Institute.Google Scholar
  32. Rechenberg, I. 1973. Evolutionsstrategie. Stuttgart, Friedrich Frommann Verlag.Google Scholar
  33. Rendel, J. M. 1967. Canalization and Gene Control. New York, Logos Press, Academic Press.Google Scholar
  34. Riedl, R. 1975. Die Ordnung des Lebendigen. Systembedingungen der Evolution. Hamburg und Berlin, Verlag Paul Parey.Google Scholar
  35. Rienesl, J. and G. P. Wagner 1992. Constancy and change of basipodial variation patterns: a comparative study of crested and marbled newts — Triturus cristatus, Triturus marmoratus — and their natural hybrids. J. Evol. Biol. 5: 307–324.Google Scholar
  36. Scharloo, W. 1988. Selection on morphological patterns. 230-520 in Population Genetics and Evolution. G. de Jong, ed. Berlin, Spinger Verl.Google Scholar
  37. Scharloo, W. 1987. Constraints in selection response. 125-149 in Genetic Constraints on Adaptive Evolution. V. Loeschke, ed. Berlin, Spinger Verl.Google Scholar
  38. Scharloo, W. 1991. Canalization: Genetic and developmental aspects. Ann. Rev. Ecol. Syst. 22: 65–93.Google Scholar
  39. Schmalhausen, I. I. 1949. Factors of Evolution. The theory of stabilizing selection. Chicago and London, University of Chicago Press.Google Scholar
  40. Schwefel, H.-P. 1981. Numerical Optimization of Computer Models. Chichester, Wiley.Google Scholar
  41. Simon, H. A. 1965. The architecture of complexity. General Systems 10: 63–73.Google Scholar
  42. Stearns, S. C. 1993. The evolutionary links between fixed and variable traits. Acta Paleont. Polonica 38: 1–17.Google Scholar
  43. Stearns, S. C., M. Kaiser and T. J. Kawecki 1995. The differential canalization of fitness components against environmental perturbations in Drosophila melanogaster. J. Evol. Biol. submittedGoogle Scholar
  44. Stebbins, G. L. 1974. Flowering Pants. Evolution Above the Species Level. Cambridge, MA, Belknap Press.Google Scholar
  45. Turelli, M. 1988. Phenotypic evolution, constant covariances, and the maintenance of additive variance. Evolution 42: 1342–1347.Google Scholar
  46. Vermeij, G. J. 1970. Adaptive versatility and skeleton construction. Amer. Nat. 104: 253–260.Google Scholar
  47. Waddington, C. H. 1957. The Strategy of the Genes. New York, MacMillan Co.Google Scholar
  48. Wagner, A., G. P. Wagner and P. Similion 1994. Epistasis can facilitate the evolution of reproductive isolation by peak shifts: a two-locus two-allele model. Genetics 138: 533–545.Google Scholar
  49. Wagner, G. P. 1981. Feedback selection and the evolution of modifiers. Acta Biotheoretica 30: 79–102.Google Scholar
  50. Wagner, G. P. 1989a. Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics 122: 223–234.Google Scholar
  51. Wagner, G. P. 1989b. The origin of morphological characters and the biological basis of homology. Evolution 43: 1157–1171.Google Scholar
  52. Wagner, G. P. 1989c. The biological homology concept. Ann. Rev. Ecol. Syst. 20: 51–69.Google Scholar
  53. Wagner, G. P. 1995. The biological role of homologues: A building block hypothesis. N. Jb. Geol. PalÄont. Abh. 19: 279–288.Google Scholar
  54. Wagner, G. P. and R. Bürger 1985. On the evolution of dominance modifiers II: a non-epuilibrium approach to the evolution of genetic systems. J. theor. Biol. 113:475–500.Google Scholar
  55. Weiss, K. M. 1990. Duplication with variation: Metameric logic in evolution from genes to morphology. Yearbook of Physical Anthropology 33: 1–23.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Günter P. Wagner
    • 1
  1. 1.Center of Computational EcologyYale UniversityNew HavenUSA

Personalised recommendations