Skip to main content

RNA viruses: a bridge between life and artificial life

  • 2. Origins of Life and Evolution
  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 929))

Included in the following conference series:

Abstract

RNA viruses can be an adequate bridge between life and artificial life. Under experimental conditions the parameters that in last instance are responsible for the evolution of replicons resembling primitive life forms can be easily studied. One year of a RNA virus evolving may be equivalent to one million years of an evolving DNA-based entity. High mutation rates as well as very short life cycles permit the capability of observing evolutionary effects in the lifetime of a human observer. Another important feature of RNA viruses, functionally related to its mutation rate, is the genome length, which ranges between 3 and 30 Kb, probably the shortest lengths with the highest estimated mutation rates that do not undergo error catastrophe when replicating. The evolutionary biology, that is to say the evolution of structural and functional properties, of RNA viruses can be probably simulated better than other non-RNA based life entities. The hypotheses underlying artificial life programmes could also be tested by experimental evolution of RNA viruses. Simplicity and rapid evolvability of RNA viruses are the basis for our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morse, S.S. (ed.): The Evolutionary Biology of Viruses. Raven Press, New York (1994)

    Google Scholar 

  2. Mills, D.R., Peterson, R.L., Spiegelman, S.: An extracellular darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl. Acad. Sci. USA 58 (1967) 217–224.

    Google Scholar 

  3. Domingo, E., Sabo, D., Taniguchi, T., Weissmann, C.: Nucleotide sequence heterogeneity of an RNA phage population. Cell 13 (1978) 735–744

    Google Scholar 

  4. Biebricher, C.K.: Darwinian selection of self-replicating RNA molecules. Evol. Biol. 16 (1983) 1–52

    Google Scholar 

  5. Eigen, M., Briebicher, C.: Sequence space and quasispecies distribution. pp. 211–245. Edit. by E. Domingo, J. Holland, P. Ahlquist in RNA Genetics (Vol. 3). CRC Press, Boca Ratón, California (1988)

    Google Scholar 

  6. Schuster, P.: Complex optimization in an artificial RNA world. Edit. by C.G. Langton, C. Taylor, J. Doyne Farmer, S. Rasmussen in Artitifical Life II, pp. 277–291. Addison-Wesley, Redwood City, CA (1992)

    Google Scholar 

  7. Hubby, J.L., Lewontin, R.C.: A molecular approach to the study of genic heterozigosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54 (1966) 577–594

    PubMed  Google Scholar 

  8. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  9. Dobzhansky, T.: Genetics of the Evolutionary Process. Columbia University Press, New York (1970)

    Google Scholar 

  10. Golding, B.: Non-Neutral Evolution. Chapman and Hall, New York (1994)

    Google Scholar 

  11. Li, W.H., Graur, D.: Fundamentals of Molecular Evolution. Sinauer, Sunderland, MA (1991)

    Google Scholar 

  12. Domingo, E., Holland, J.: Mutation rates and rapid evolution of RNA viruses. pp. 161–184. Edit. by S.S. Morse in The Evolutionary Biology of Viruses. Raven Press, New York (1994)

    Google Scholar 

  13. Eigen, M., Schuster, P.: The Hypercycle. A Principle of Natural Self-organization. Springer-Verlag, Berlin (1979)

    Google Scholar 

  14. Drake, J.: Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 90 (1993) 4171–4175

    Google Scholar 

  15. Temin, H.: Is HIV unique or merely different) J. AIDS 2 (1989) 1–9

    Google Scholar 

  16. Martínez, M.A., Carrillo, C., González-Candelas, F., Moya, A., Domingo, E., Sobrino, F.: Fitness alteration of foot-and-mouth disease virus mutants: measurement of adaptability of viral sequences. J. Virol. 65 (1991) 3954–3957

    Google Scholar 

  17. Fitch, W., Leiter, J.M.E., Li, X., Palese, P.: Positive darwinian evolution in human influenza A viruses. Proc. Natl. Acad. Sci. USA 88 (1991) 4270–4274

    Google Scholar 

  18. Moya, A., Rodriguez-Cerezo, E., García-Arenal, F.: Genetic structure of natural populations of the plant RNA virus tobacco mild green mosaic virus. Mol. Biol. Evol. 10 (1993) 449–456

    Google Scholar 

  19. Muller, H.J.: The relation of recombination to mutational advance. Mutat. Res. 1 (1964) 2–9

    Google Scholar 

  20. Chao, L.: Fitness of RNA virus decreased by Muller's ratchet. Nature 348 (1990) 454–455

    Google Scholar 

  21. Duarte, E., Clarke, D., Moya, A., Domingo, E., Holland, J.: Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc. Natl. Acad. Sci. USA 89 (1992) 6015–6019

    Google Scholar 

  22. Gause, G.F.: The Struggle for Existence. Dover, New York (1971)

    Google Scholar 

  23. Clarke, D., Duarte, E., Elena, S., Moya, A., Domingo, E., Holland, J.: The red queen reigns in the kingdom of RNA viruses. Proc. Natl. Acad. Sci. USA 91 (1994) 4821–4824

    Google Scholar 

  24. Van Valen, L.: A new evolutionary law. Evol. Theory 1 (1973) 1–30

    Google Scholar 

  25. Bell, G.: Sex and Death in Protozoa: The History of an Obsession. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  26. Clarke, D., Duarte, E., Moya, A., Elena, S.F., Domingo, E., Holland, J.: Genetic bottleneck and population passages cause profound fitness differences in RNA viruses. J. Virol. 67 (1993) 222–228

    Google Scholar 

  27. Duarte, E., Clarke, D., Moya, A., Elena, S.F., Domingo, E., Holland, J.: Many-trillionfold amplifications of single RNA virus particles fails to overcome the Muller's ratchet effect. J. Virol. 67 (1993) 3620–3623

    Google Scholar 

  28. Duarte, E., Novella, I., Ledesma, S., Clarke, D., Moya, A., Elena, S.F., Domingo, E., Holland, J.: Subclonal components of consensus fitness in an RNA virus clone. J. Virol. 68 (1994) 4295–4301

    Google Scholar 

  29. Elena, S., González-Candelas, F., Novella, I., Duarte, I., Clarke, D., Domingo, E., Holland, J., Moya, A.: Evolution of fitness in experimental populations of vesicular stomatitis virus. Submitted

    Google Scholar 

  30. Emmeche, C.: The Garden in the Machine. Princeton University Press, NJ (1994)

    Google Scholar 

  31. Eigen, M.: Steps Towards Life. A Perspective on Evolution. Oxford University Press, Oxford (1992)

    Google Scholar 

  32. Langton, C.G.: Introduction. Edit. by C.G. Langton, C. Taylor, J. Doyne Farmer, S. Rasmussen in Artificial Life II, pp. 3–23. Addison-Wesley, Redwood City, CA (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Federico Morán Alvaro Moreno Juan Julián Merelo Pablo Chacón

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moya, A., Domingo, E., Holland, J.J. (1995). RNA viruses: a bridge between life and artificial life. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds) Advances in Artificial Life. ECAL 1995. Lecture Notes in Computer Science, vol 929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59496-5_297

Download citation

  • DOI: https://doi.org/10.1007/3-540-59496-5_297

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59496-3

  • Online ISBN: 978-3-540-49286-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics