Skip to main content

Some extensions of rewriting

  • Conference paper
  • First Online:
Term Rewriting (TCS School 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 909))

Included in the following conference series:

Abstract

Automated deduction motivates the introduction of several extensions of rewriting, especially ordered rewriting, class rewriting and rewriting with constraints. This paper is a survey of these three notions, shows the evolution between them and their increasing power of expressivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Anantharaman and J. Hsiang. An automated proof of the Moufang identities in alternative rings. Journal of Automated Reasoning, 6:79–109, 1990.

    Google Scholar 

  2. S. Anantharaman and J. Mzali. Unfailing completion modulo a set of equations. Research Report 470, LRI-Orsay (Fr.), 1989.

    Google Scholar 

  3. F. Baader and K. Schulz. Combination techniques and decision problems for disuni-fication. volume 690 of Lecture Notes in Computer Science, pages 301–315. Springer-Verlag, June 1993.

    Google Scholar 

  4. L. Bachmair. Canonical equational proofs. Computer Science Logic, Progress in Theoretical Computer Science. Birkhäuser Verlag AG, 1991.

    Google Scholar 

  5. L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. Theoretical Computer Science, 67(2–3):173–202, October 1989.

    Google Scholar 

  6. L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure. In H. Aït-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, Volume 2: Rewriting Techniques, pages 1–30. Academic Press, 1989.

    Google Scholar 

  7. L. Bachmair and H. Ganzinger. Associative-Commutative superposition. Technical Report MPI-I-93-250, Max-Planck-Institut für Informatik, Saarbrücken, 1993.

    Google Scholar 

  8. L. Bachmair and H. Ganzinger. Buchberger's algorithm: A constraint-based completion procedure. In Proceedings 1st International Conference on Constraints in Computational Logics, Munich (Germany), sept. 1994.

    Google Scholar 

  9. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superposition. In Proceedings 11th International Conference on Automated Deduction, Saratoga Springs (N.Y., USA), pages 462–476, 1992.

    Google Scholar 

  10. T. B. Baird, G. E. Peterson, and R. W. Wilkerson. Complete sets of reductions modulo associativity, commutativity and identity. In N. Dershowitz, editor, Proceedings 3rd Conference on Rewriting Techniques and Applications, Chapel Hill (N.C., USA), volume 355 of Lecture Notes in Computer Science, pages 29–44. Springer-Verlag, April 1989.

    Google Scholar 

  11. H. P. Barendregt et al. Term graph rewriting. In Proc. of PARLE'87, volume 259 of Lecture Notes in Computer Science. Springer-Verlag, 1987.

    Google Scholar 

  12. H. Comon. Completion of rewrite systems with membership constraints. In W. Kuich, editor, Proceedings of ICALP 92, volume 623 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

    Google Scholar 

  13. N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science, volume B, chapter 6: Rewrite Systems, pages 244–320. Elsevier Science Publishers B. V. (North-Holland), 1990. Also as: Research report 478, LRI.

    Google Scholar 

  14. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 6, pages 244–320. Elsevier Science Publishers B. V. (North-Holland), 1990.

    Google Scholar 

  15. N. Dershowitz and J.-P. Jouannaud. Notations for rewriting. Bulletin of European Association for Theoretical Computer Science, 43:162–172, February 1991.

    Google Scholar 

  16. N. Dershowitz and M. Okada. A rationale for conditional equational programming. Theoretical Computer Science, 75:111–138, 1990.

    Google Scholar 

  17. E. Domenjoud. A technical note on AC-unification. The number of minimal unifiers of the equation αx 1+⋯+αx p= Ac βy 1+⋯+βy q. Journal of Automated Reasoning, 8:39–44, 1992. Also as research report CRIN 89-R-2.

    Google Scholar 

  18. J. A. Goguen, C. Kirchner, and J. Meseguer. Concurrent term rewriting as a model of computation. In R. Keller and J. Fasel, editors, Proceedings of Graph Reduction Workshop, volume 279 of Lecture Notes in Computer Science, pages 53–93, Santa Fe (NM, USA), 1987. Springer-Verlag.

    Google Scholar 

  19. G. Huet. Constrained Resolution: A Complete Method for Higher Order Logic. PhD thesis, Case Western Reserve University, 1972.

    Google Scholar 

  20. G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of the ACM, 27(4):797–821, October 1980. Preliminary version in 18th Symposium on Foundations of Computer Science, IEEE, 1977.

    Google Scholar 

  21. G. Huet. A complete proof of the Knuth-Bendix completion algorithm. In JCSS 23, pages 11–21, 1981.

    Google Scholar 

  22. J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the 14th Annual ACM Symposium on Principles Of Programming Languages, Munich (Germany), pages 111–119, 1987.

    Google Scholar 

  23. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM Journal of Computing, 15(4):1155–1194, 1986. Preliminary version in Proceedings 11th ACM Symposium on Principles of Programming Languages, Salt Lake City (USA), 1984.

    Google Scholar 

  24. J.-P. Jouannaud and C. Marché. Completion modulo associativity, commutativity and identity (AC1). In A. Miola, editor, Proceedings of DISCO'90, volume 429 of Lecture Notes in Computer Science, pages 111–120. Springer-Verlag, April 1990.

    Google Scholar 

  25. S. Kaplan and J.-L. Rémy. Completion algorithms for conditional rewriting systems. In H. Aït-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, Volume 2: Rewriting Techniques, pages 141–170. Academic Press, 1989.

    Google Scholar 

  26. D. Kapur and H. Zhang. RRL: A rewrite rule laboratory. In Proceedings 9th International Conference on Automated Deduction, Argonne (Ill., USA), volume 310 of Lecture Notes in Computer Science, pages 768–769. Springer-Verlag, 1988.

    Google Scholar 

  27. D. Kapur and H. Zhang. A case study of the completion procedure: ring commutativity problems. In J.-L. Lassez and G. Plotkin, editors, Computational Logic. Essays in honor of Alan Robinson, chapter 10, pages 360–394. MIT Press, Cambridge (MA, USA), 1991.

    Google Scholar 

  28. C. Kirchner and H. Kirchner. Constrained equational reasoning. In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, Portland (Oregon), pages 382–389. ACM Press, July 1989. Report CRIN 89-R-220.

    Google Scholar 

  29. C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of OBJ-3. In Proceedings of 15th International Colloquium on Automata, Languages and Programming, volume 317 of Lecture Notes in Computer Science, pages 287–301. Springer-Verlag, 1988.

    Google Scholar 

  30. C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints. Revue d'Intelligence Artificielle, 4(3):9–52, 1990. Special issue on Automatic Deduction.

    Google Scholar 

  31. C. Kirchner, H. Kirchner, and M. Vittek. Implementing computational systems with constraints. In Paris Kanellakis, Jean-Louis Lassez, and Vijay Saraswat, editors, Proceedings of the first Workshop on Principles and Practice of Constraint Programming, Providence (R.I., USA), pages 166–175. Brown University, 1993.

    Google Scholar 

  32. H. Kirchner and C. Ringeissen. Constraint solving by narrowing in combined algebraic domains. In P. Van Hentenryck, editor, Proceedings of the 11th International Conference on Logic Programming, S. Margherita Ligure (Italy), pages 617–631, MIT Press, 1994.

    Google Scholar 

  33. D. S. Lankford and A. Ballantyne. Decision procedures for simple equational theories with permutative axioms: complete sets of permutative reductions. Technical report, Univ. of Texas at Austin, Dept. of Mathematics and Computer Science, 1977.

    Google Scholar 

  34. C. Lynch and W. Snyder. Redundancy criteria for constrained completion. In C. Kirchner, editor, Proceedings 5th Conference on Rewriting Techniques and Applications, Montreal (Canada), volume 690 of Lecture Notes in Computer Science, pages 2–16. Springer-Verlag, 1993.

    Google Scholar 

  35. C. Marché. Réécriture modulo une théorie présentée par un système convergent et décidabilité du problème du mot dans certaines classes de théories équationnelles. Thèse de Doctorat d'Université, Université de Paris-Sud, Orsay (France), October 1993.

    Google Scholar 

  36. U. Martin and T. Nipkow. Ordered rewriting and confluence. In M. E. Stickel, editor, Proceedings 10th International Conference on Automated Deduction, Kaiserslautern (Germany), volume 449 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

    Google Scholar 

  37. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(1):73–155, 1992.

    Google Scholar 

  38. C. K. Mohan. Priority rewriting: Semantics, confluence, and conditionals. In N. Dershowitz, editor, Proceedings 3rd Conference on Rewriting Techniques and Applications, Chapel Hill (N.C., USA), volume 355 of Lecture Notes in Computer Science, pages 278–291. Springer-Verlag, April 1989.

    Google Scholar 

  39. P. Narendran and M. Rusinowitch. Any ground associative-commutative theory has a finite canonical system. In R. V. Book, editor, Proceedings 4th Conference on Rewriting Techniques and Applications, Como (Italy). Springer-Verlag, 1991.

    Google Scholar 

  40. R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Brückner, editor, Proceedings of ESOP'92, volume 582 of Lecture Notes in Computer Science, pages 371–389. Springer-Verlag, 1992.

    Google Scholar 

  41. R. Nieuwenhuis and A. Rubio. Theorem proving with ordering constrained clauses. In D. Kapur, editor, Proceedings of CADE-11, volume 607 of Lecture Notes in Computer Science, pages 477–491. Springer-Verlag, 1992.

    Google Scholar 

  42. R. Nieuwenhuis and A. Rubio. AC-superposition with constraints: no AC-unifiers needed. In A. Bundy, editor, Proceedings of CADE-12, volume 814 of Lecture Notes in Computer Science, pages 545–559. Springer-Verlag, 1994.

    Google Scholar 

  43. J. Pedersen. Confluence methods and the word problem in universal algebra. PhD thesis, Emory University, 1984.

    Google Scholar 

  44. G. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories. Journal of the ACM, 28:233–264, 1981.

    Google Scholar 

  45. G. E. Peterson. Complete sets of reductions with constraints. In M. E. Stickel, editor, Proceedings 10th International Conference on Automated Deduction, Kaiserslautern (Germany), volume 449 of Lecture Notes in Computer Science, pages 381–395. Springer-Verlag, 1990.

    Google Scholar 

  46. A. Rubio and R. Nieuwenhuis. A precedence-based total ac-compatible ordering. In C. Kirchner, editor, Proceedings 5th Conference on Rewriting Techniques and Applications, Montreal (Canada), volume 690 of Lecture Notes in Computer Science, pages 374–388. Springer-Verlag, 1993.

    Google Scholar 

  47. J. Siekmann and P. Szabó. A noetherian and confluent rewrite system for idempotent semigroups. Semigroup Forum, 25:83–110, 1982.

    Google Scholar 

  48. G. Smolka. Logic Programming over Polymorphically Order-Sorted Types. PhD thesis, FB Informatik, Universität Kaiserslautern, Germany, 1989.

    Google Scholar 

  49. M. E. Stickel. A case study of theorem proving by the Knuth-Bendix method: Discovering that x 3=x implies ring commutativity. In R. Shostak, editor, Proceedings 7th International Conference on Automated Deduction, Napa Valley (Calif., USA), volume 170 of Lecture Notes in Computer Science, pages 248–258. Springer-Verlag, 1984.

    Google Scholar 

  50. R. L. Veroff. Canonicalization and demodulation. Internal Report ANL-81-6, Argonne National Laboratory, Argonne, IL, 1981.

    Google Scholar 

  51. L. Vigneron. Associative-commutative deduction with constraints. In A. Bundy, editor, Proceedings of CADE-12, volume 814 of Lecture Notes in Computer Science, pages 530–544. Springer-Verlag, 1994.

    Google Scholar 

  52. L. Wos. Automated Reasoning: 33 basic research problems. Prentice-Hall, Englewood Cliffs, NJ, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hubert Comon Jean-Pierre Jounnaud

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirchner, H. (1995). Some extensions of rewriting. In: Comon, H., Jounnaud, JP. (eds) Term Rewriting. TCS School 1993. Lecture Notes in Computer Science, vol 909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59340-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-59340-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59340-9

  • Online ISBN: 978-3-540-49237-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics