Advertisement

Word problem for Thue systems with a few relations

  • Yuri Matiyasevich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 909)

Abstract

The history of investigations on the word problem for Thue systems is presented with the emphasis on undecidable systems with a few relations. The best known result, a Thue system with only three relations and undecidable word problem, is presented with details. Bibl. 43 items.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Adian. On P. S. Novikov's and his disciple's investigations on algorithmical problems in algebra (in Russian). Trudy Mat. Inst. Steklov., 133:23–32, 1973.Google Scholar
  2. 2.
    S. I. Adian and G. S. Makanin. Investigations on algorithmical problems in algebra (in Russian). Trudy Mat. Inst. Steklov., 168:197–217, 1984.Google Scholar
  3. 3.
    W. W. Boone. The word problem. Ann. Math., 70(2):207–265, 1959.Google Scholar
  4. 4.
    W. W. Boone, D. Collins, and Ju. V. Matijasevič. Embedding into semigroups with only a few defining relations. In J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic and the Foundations of Mathematics, pages 27–40, Amsterdam, 1971. North-Holland.Google Scholar
  5. 5.
    W. W. Boone and D. J. Collins. Embeddings into groups with only a few defining relations. J. Austral. Math. Soc., 18(1):1–7, 1974.Google Scholar
  6. 6.
    V. V. Borisov. Simple examples of groups with undecidable word problem (in Russian). Mat. Zametki, 6(5):521–532, 1969.Google Scholar
  7. 7.
    J. L. Britton. The word problem. Ann. Math., 77(1):16–32, 1963.Google Scholar
  8. 8.
    V. Claus. Die Grenze zwischen Entscheidbarkeit und Nichtentscheidbarkeit. Fernstndeinkurs für die Fernuniversität Hagen, Open University, Hagen, 1979.Google Scholar
  9. 9.
    V. Claus. Some remarks on PCP(k) and related problems. Bull. EATCS, 12:54–61, 1980.Google Scholar
  10. 10.
    D. J. Collins. A simple presentation of a group with unsolvable word problem. Illinois J. Math., 30(2):230–234, 1986.Google Scholar
  11. 11.
    D. J. Collins. Word and conjugacy problems in groups with only a few defining relations. Z. Math. Logik Grundlag. Math., 15(4):305–323, 1969.Google Scholar
  12. 12.
    M. Dehn. Über die Topologie des dreidimensionalen Raumes. Math. Ann., 69:137–168, 1910.Google Scholar
  13. 13.
    M. Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann., 71:116–144, 1912.Google Scholar
  14. 14.
    A. Ehrenfeucht and G. Rozenberg. On the (generalized) Post correspondence problem with lists of length 2. Lect. Notes Comput. Sci., 115:408–416, 1981.Google Scholar
  15. 15.
    M. J. Hall. The word problem for semigroups with two generators. J. Symbolic Logic, 14:115–118, 1949.Google Scholar
  16. 16.
    G. Higman. Subgroups of finitely presented groups. Proc. Roy. Soc., 262(1311):455–475, 1961.Google Scholar
  17. 17.
    G. Lallement. Presentations de monoides et problems algorithmiques. Lecture Notes in Mathematics, 586:136–144, 1977.Google Scholar
  18. 18.
    G. Lallement. The word problem for Thue rewriting systems. This volume, 1994.Google Scholar
  19. 19.
    J. Lockhart. Triviality problem for semigroups of deficiency 1. J. Symbolic Logic, 42(3):457–458, 1977.Google Scholar
  20. 20.
    W. Magnus. Das Identitäts problem für Gruppen mit einer definierenden Relation. Math. Ann., 106:295–307, 1932.Google Scholar
  21. 21.
    G. S. Makanin. On the word problem for finitely presented semigroups. Soviet Math. Doklady, 7:1478–1480, 1966.Google Scholar
  22. 22.
    C. Marché. On ground AC-completion. Lect. Notes Comput. Sci., 488:411–422, 1991.Google Scholar
  23. 23.
    A. A. Markoff. Impossibility of certain algorithms in the theory of associative systems (in Russian). Dokl. Akad. Nauk SSSR, 55(7):587–590, 1947.Google Scholar
  24. 24.
    A. A. Markoff. Impossibility of certain algorothms in the theory of associative systems (in Russian). Dokl. Akad. Nauk SSSR, 58(3):353–356, 1947.Google Scholar
  25. 25.
    A. A. Markoff. Theory of algorithms (in Russian). Trudy Mat. Inst. Steklov., 42, 1954. Translated in Israel Program of scientific Translations. Jerusalem, 1961. MR 17, 1038, MR 24, A2527.Google Scholar
  26. 26.
    Yu. Matiyasevich. Simple examples of undecidable associative calculi (in Russian). Dokl. Akad. Nauk SSSR, 173:1264–1266, 1967. English translation in: Soviet Math. Dokl., 8:555–557, 1967.Google Scholar
  27. 27.
    Yu. Matiyasevich. Simple examples of undecidable canonical calculi (in Russian). Trudy Mat. Inst. Steklov., 93:50–88, 1967. English translation in: Proc Steklov Inst. Math., 93:227–252, 1968.Google Scholar
  28. 28.
    V. L. Murskii. Unrecognizable properties of finite systems of identity relations (in Russian). Dokl. Akad. Nauk SSSR, 196(3):520–522, 1971.Google Scholar
  29. 29.
    P. S. Novikov. On algorithmical undecidability of the word problem in the theory of groups (in Russian). Dokl. Akad. Nauk SSSR, 85(4):709–712, 1952.Google Scholar
  30. 30.
    P. S. Novikov. On algorithmical undecidability of the word problem in the theory of groups (in Russian). Trudy Mat. Inst. Steklov., 44, 1955.Google Scholar
  31. 31.
    J. J. Pansiot. A note on Post's correspondence problem. 12(5):233, 1981.Google Scholar
  32. 32.
    E. L. Post. A variant of recursively unsolvable problem. Bull. Amer. Math. Soc., 52:264–268, 1946.Google Scholar
  33. 33.
    E. L. Post. Recursive unsolvability of a problem of Thue. J. Symbolic Logic, 12:1–11, 1947.Google Scholar
  34. 34.
    L. Priese. Über ein 2-dimensionales Thue-System mit zwei Regeln und unentscheid-baren Wortproblem. Z. Math. Logik Grundlag. Math., 25(2):179–192, 1979.Google Scholar
  35. 35.
    D. Scott. A short recursively unsolvable problem. J. Symbolic Logic, 21:111–112, 1956.Google Scholar
  36. 36.
    G. Sénizergues. Some undecidable termination problem for semi-Thue systems. To appear in Lect. Notes Comput. Sci., 1994Google Scholar
  37. 37.
    A. Thue. Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Skrifter utgit av Videnskapsselskapet i Kristiania, I. Matematisk-naturvidenskabelig klasse, 10, 34pp., 1914. Reprinted in: A. Thue. Selected Mathematical Papers. Oslo, 1977, 493–524.Google Scholar
  38. 38.
    G. S. Tseitin. An associative calculus with undecidable problem of equivalence (in Russian). Dokl. Akad. Nauk SSSR, 107(3):370–371, 1956.Google Scholar
  39. 39.
    G. S. Tseitin. An associative calculus with undecidable problem of equivalence (in Russian). Trudy Mat. Inst. Steklov., 52:172–189, 1958.Google Scholar
  40. 40.
    M. K. Valiev. Universal group with twenty-one defining relation. Discrete Math., 17:207–213, 1977.Google Scholar
  41. 41.
    M. K. Valiev. Examples of universal finitely-presented groups (in Russian). Dokl. Akad. Nauk SSSR, 211(2):265–268, 1973.Google Scholar
  42. 42.
    M. K. Valiev. On polynomial reducibility of word problem under embedding of recursively presented groups in finitely presented groups. In J. Bečvář, editor, Mathematical Foundations of Computer Science 1975, volume 32 of Lect. Notes Comput. Sci., pages 432–438. Springer-Verlag, 1975.Google Scholar
  43. 43.
    A. Yasuhara. The solvability of the word problem for certain semigroups. Proc. Amer. Math. Soc., 26(4):645–650, 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Yuri Matiyasevich
    • 1
  1. 1.Saint-Petersburg Branch (POMI RAN)Steklov Institute of Mathematics of Russian Academy of SciencesSaint-PetersburgRussia

Personalised recommendations