Skip to main content

Affine geometry of collinearity and conditional term rewriting

Part of the Lecture Notes in Computer Science book series (LNCS,volume 909)

Abstract

A geometrical figure is a relation on a finite set of points. Its properties can be expressed using equations between first order terms. A terminating and confluent conditional term rewriting system will prove some theorems of the affine geometry of collinearity. A narrowing-based unification algorithm will solve every system of geometrical equations in the language of affine geometry of collinearity.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Balbiani, V. Dugat, L. Fariñas del Cerro and A. Lopez. Eléments de géométrie mécanique. Hermès, Paris, France, 1994.

    Google Scholar 

  2. L. Bachmair. Canonical Equational Proofs. Birkhaüser, Boston, Massachusetts, 1991.

    Google Scholar 

  3. A. Bockmayr. Conditional rewriting and narrowing as a theoretical framework for logic-functional programming. Technical report 10/86, Institut für Informatik, Universität Karlsruhe, 1986.

    Google Scholar 

  4. B. Buchberger. Gröbner bases: an algorithmic method in polynomial ideal theory. In N. Bose editor: Recent Trends in Multidimensional Systems Theory. Reidel, Dordrecht, Netherlands, 1985.

    Google Scholar 

  5. J.-P. Colette. Histoire des mathématiques. Editions du renouveau pédagogique, Ottawa, Canada, 1979.

    Google Scholar 

  6. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor: Handbook of Theoretical Computer Science: Formal Models and Semantics. North-Holland, Amsterdam, Netherlands, p. 243–309, 1990.

    Google Scholar 

  7. H. Ganzinger. Ground term confluence in parametric conditional equational specifications. Proceedings of the Symposium on Theoretical Aspects of Computer Science. Springer-Verlag, LNCS 247,1987.

    Google Scholar 

  8. H. Ganzinger. A completion procedure for conditional equations. In S. Kaplan and J.-P. Jouannaud, editors: Conditional Term Rewriting Systems, 1st International Workshop, Orsay, France, July 1987, Proceedings. Springer Verlag, LNCS 308, p. 62–83, 1988.

    Google Scholar 

  9. D. Hilbert. Les fondements de la géométrie. Dunod, Paris, France, 1971.

    Google Scholar 

  10. J.-M. Hullot. Canonical forms and unification. Proceedings of the Fifth Conference on Automated Deduction. Springer-Verlag, LNCS 87, p. 318–334, 1980.

    Google Scholar 

  11. H. Hußmann. Unification in conditional equational theories. In: EUROCAL, Linz, Austria, 1985, Proceedings. Springer-Verlag, LNCS 204, p. 543–553, 1985.

    Google Scholar 

  12. S. Kaplan. Simplifying conditional term rewriting systems: unification, termination and confluence. In: Journal of Symbolic Computation, volume 4, number 3, p. 295–334, 1987.

    Google Scholar 

  13. S. Kaplan. Positive/negative conditional rewriting. In S. Kaplan and J.-P. Jouannaud, editors: Conditional Term Rewriting Systems, 1st International Workshop, Orsay, France, july 1987, Proceedings. Springer Verlag, LNCS 308, p. 129–141, 1988.

    Google Scholar 

  14. C. Kirchner. Méthodes et outils de conception systématique d'algorithmes d'unification dans les théories équationnelles. Thèse d'état de l'université de Nancy, 1985.

    Google Scholar 

  15. M. Martelli and U. Montanari. An efficient unification algorithm. In: ACM Transactions on Programming Languages and Systems, volume 4, number 2, pages 258–282, 1982.

    Google Scholar 

  16. A. Middeldorp and E. Hamoen. Counterexamples to completeness results for basic narrowing. In H. Kirchner and G. Levi (editors): Algebraic and Logic Programming, Third International ALP Conference, Volterra, Italy, september 1992, Proceedings. Springer-Verlag, LNCS 632, p. 244–258, 1992.

    Google Scholar 

  17. M. Rusinowitch. Démonstration automatique, techniques de réécriture. InterEditions, Paris, France, 1989.

    Google Scholar 

  18. W. Snyder. A Proof Theory for General Unification. Birkhäuser, Boston, Massachusetts, 1991.

    Google Scholar 

  19. W.-T. Wu. Basic Principles of Mechanical Theorem Proving in Geometries. Springer-Verlag, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hubert Comon Jean-Pierre Jounnaud

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balbiani, P., del Cerro, L.F. (1995). Affine geometry of collinearity and conditional term rewriting. In: Comon, H., Jounnaud, JP. (eds) Term Rewriting. TCS School 1993. Lecture Notes in Computer Science, vol 909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59340-3_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-59340-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59340-9

  • Online ISBN: 978-3-540-49237-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics