Advertisement

Refutation systems for prepositional modal logics

  • Pierangelo Miglioli
  • Ugo Moscato
  • Mario Ornaghi
Modal Logic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 918)

Abstract

Now we are working on extensions to first order modal logics and to modal logics with intuitionistic basis. A comparison with the work of Wallen [Wal] is planned.

Moreover, we believe that the idea of making more explicit the meaning of the involved necessity operator in connection with the Kripke semantics of the underlying modal logic can be applied to other modal logics (for instance, the logic G of provability) and that this tool is powerful and flexible enough to be applied to every modal logic for which a Kripke semantics exists.

It is clear that if this is true a kind of general uniform technique to obtain efficient complete and correct calculi for different modal logics could be found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Boo]
    Boolos G.-The unprovability of consistency-Cambridge University Press, 1979.Google Scholar
  2. [Dyc]
    Dyckhoff R.-Contraction-free sequent calculi for intuitionistic logic-Journal of Symbolic Logic, LVII, 1992, pp. 795–807.Google Scholar
  3. [Fit]
    Fitting M.-Intuitionistic Logic, Model Theory and Forcing-North Holland, 1969.Google Scholar
  4. [Fit1]
    Fitting M.-A tableau system for propositional S5-Notre Dame Journal of Formal Logic, XVIII, 1977, pp. 292–294.Google Scholar
  5. [Fit2]
    Fitting M.-Proof methods for modal and intuitionistic logic-D. Reidel Pu. Co., 1983.Google Scholar
  6. [Gir]
    Girle R.-Non-looping tableau for S4-in Basin D., Hähnle R., Franhöfer B., Posegga J., Schwind C. (Eds.) Proceedings of the workshop on Theorem Proving with Analytic Tableaux and Related Methods, Marseille, France, April 28–30, 1993, Max-Planck Institut für Informatik, MPI-I-93-213, 1993, pp. 77–88.Google Scholar
  7. [Grz]
    Grzegorczyk A.-Some relational systems and the associated topological spaces-Fundamenta mathematicae, LX, 1977, pp. 223–231.Google Scholar
  8. [Hud]
    Hudelmaier J.-On contraction free sequent calculus for the modal logic S4-in Broda K., D'Agosdno M., Gorè R., Johnson R., Reeves S. (Eds.) Proceedings of the 3rd workshop on Theorem Proving with Analytic Tableaux and Related Methods, Abingdon U.K., May 4–6, 1994, Imperial College of Science, Technology and Medicine TR-94/5, 1994, pp. 105–112.Google Scholar
  9. [HC]
    Hughes G., Cresswell M.-K1.1 is not canonical-Bulletin of the Section of Logic of Polish Academy of Sciences, 11, 1982, pp. 109–113.Google Scholar
  10. [HC1]
    Hughes G., Cresswell M.-A Companion to Modal Logic-Methuen & Co., 1984.Google Scholar
  11. [McK]
    McKinsey J.-On the syntactical construction of systems of modal logic-Journal of Symbolic Logic, X, 1945, pp. 83–94.Google Scholar
  12. [MMO]
    Miglioli P., Moscato U., Ornaghi M.-An improved refutation system for intuitionistic predicate logic-The Journal of Automated Reasoning, 13, 1994, pp. 361–373.CrossRefGoogle Scholar
  13. [MMO1]
    Miglioli P., Moscato U., Ornaghi M.-How to avoid duplications in refutation systems for intuitionistic and Kuroda logic-in Broda K., D'Agostino M., Gorè R., Johnson R., Reeves S. (Eds.) Proceedings of the 3rd workshop on Theorem Proving with Analytic Tableaux and Related Methods, Abingdon U.K., May 4–6, 1994, Imperial College of Science, Technology and Medicine TR-94/5, 1994, pp. 169–187.Google Scholar
  14. [Rau]
    Rautenberg W.-Modal tableau calculi and interpolation-Journal of Philosophical Logic, 12, 1983, pp. 403–423 (correction in Journal of Philosophical Logic, 14, 1985, p. 229).CrossRefGoogle Scholar
  15. [Res]
    Rescher N.-On modal renderings of intuitionistic propositional logic-Notre Dame Journal of Formal Logic, VII, 1966, pp. 277–280.Google Scholar
  16. [Seg]
    Segerberg K.-An Essay in Classical Modal Logic — Filosofiska Studier, n. 13, Uppsala, 1971.Google Scholar
  17. [Sob]
    Sobocinski B.-Remarks about axiomatization of certain modal systems-Notre ame Journal of Formal Logic, V, 1964, pp. 71–80.Google Scholar
  18. [Sob1]
    Sobocinski B.-Family K of the non-Lewis modal systems-Notre Dame Journal of Formal Logic, V, 1964, pp. 313–318.Google Scholar
  19. [Wal]
    Wallen L.-Automated Deduction in Nonclassical Logics-MIT Press, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Pierangelo Miglioli
    • 1
  • Ugo Moscato
    • 1
  • Mario Ornaghi
    • 1
  1. 1.Information Science DepartmentUniversity of MilanItaly

Personalised recommendations