Spin physics with polarized electrons: MIT-bates program

  • Stanley Kowalski
Part VII Laboratory Summaries
Part of the Lecture Notes in Physics book series (LNP, volume 452)


The recent experiments at MIT-Bates, exploiting the use of polarized electrons and the measurement of spin observables, point to the importance of such studies in understanding nucleon and nuclear structure. In many instances we find both increased sensitivity and new observables which allow the accurate determination of small amplitudes. A major component of the proposed future program at MIT-Bates, NIKHEF, MAINZ and CEBAF, will involve the use of polarized beams, polarized targets and recoil polarimetry.

Modern electron accelerators, operating at 100% duty factor, will provide the ultimate capability for coincidence experiments. The stretcher/storage ring facilities at MIT-Bates and NIKHEF were designed to operate with internal targets. Internal target experiments with polarized beams and polarized targets at high luminosities represents an important new capability for nuclear research.

The next decade promises to be a very exciting one for electronuclear physics. For the first time the full power of the electron probe can be applied in the broadest sense to study nucleons and nuclei.

I would like to acknowledge the help of my colleagues at MIT-Bates and those at other laboratories who provided me with data and information about the research reported here. This work was supported in part by the U.S. Department of Energy under cooperative agreement NO. DE-FC02-94ER40818.


Form Factor Strange Quark Duty Factor Magnetic Form Factor Spin Observable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Y. Prescott et al., Phys. Lett. 84B (1979) 524.Google Scholar
  2. 2.
    T. W. Donnelly and A. S. Raskin, Annals of Physics 169 (1986) 247.Google Scholar
  3. 3.
    S. Platchkov et al., Nucl. Phys. A510 (1990) 740.Google Scholar
  4. 4.
    R. Arnold et al., Phys. Rev. C23 (1981) 363.Google Scholar
  5. 5.
    H. Arenhövel, Phys. Lett. B199 (1987) 13.Google Scholar
  6. 6.
    T. Eden et al., Phys. Rev. C50 (1994) R1.Google Scholar
  7. 7.
    T. Eden et al., Nucl. Instr. and Meth. A338 (1994) 432.Google Scholar
  8. 8.
    B. Blankleider and R. M. Woloshyn, Phys. Rev. C29 (1984) 538.Google Scholar
  9. 9.
    J. L. Friar et al., Phys. Rev. C43 (1990) 2310.Google Scholar
  10. 10.
    C. Ciofi degli Atti, E. Pace and G. Salme, Phys. Rev. C46 (1992) R1591.Google Scholar
  11. 11.
    R. Schulze and P. Sauer, Phys. Rev. C48 (1993) 38.Google Scholar
  12. 12.
    C. E. Woodward et al., Phys. Rev. Lett. 65 (1990) 698.Google Scholar
  13. 13.
    C. E. Jones et al., Phys. Rev. C47 (1993) 110.Google Scholar
  14. 14.
    A.K. Thompson et al., Phys. Rev. Lett. 68 (1992) 2910.Google Scholar
  15. 15.
    H. Gao et al., Phys. Rev. C50 (1994) R546.Google Scholar
  16. 16.
    S. Boffi, C. Giusti, and F. D. Pacati, Phys. Rep. 226 (1993) 1.Google Scholar
  17. 17.
    S. Boffi, C. Giusti, and F. D. Pacati, Nucl. Phys. A435 (1985) 697.Google Scholar
  18. 18.
    C. N. Papanicolas, Bates Proposal #87-09; S. Dolfini et al., Bull. Am. Phys. Soc. 33 (1988) 1578.Google Scholar
  19. 19.
    B. Schoch, Bull. Am. Phys. Soc. 39 (1994) 1033.Google Scholar
  20. 20.
    J. Mandeville et al., Phys. Rev. Lett. 72 (1994) 3325.Google Scholar
  21. 21.
    J. R. Comfort and B. C. Karp, Phys. Rev. C21 (1980) 2162.Google Scholar
  22. 22.
    D. F. Jackson and I. Abdul-Jalil, J. Phys. G6 (1980) 481.Google Scholar
  23. 23.
    M. M. Giannini and G. Ricco, Ann. Phys. (N.Y.) 102 (1976) 458.Google Scholar
  24. 24.
    R. W. Lourie and V. Burkert, Bates Proposal #89-03 (1989).Google Scholar
  25. 25.
    R. C. E. Devinish and D. H. Lyth, Nucl. Phys. B43 (1972) 228.Google Scholar
  26. 26.
    S. L. Glashow, Nucl. Phys. 22 (1961) 579; S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; Phys. Rev. Lett. 27 (1971) 1688; A. Salam, Rev. Mod. Phys. 52 (1980) 525.Google Scholar
  27. 27.
    S. Fanchiotti and A. Sirlin, Phys. Rev. D35 (1987) 785.Google Scholar
  28. 28.
    M. C. Noecker et al., Phys. Rev. Lett. 61 (1988) 319.Google Scholar
  29. 29.
    W. Heil et al., Nucl. Phys. B327 (1989) 1.Google Scholar
  30. 30.
    G. Feinberg, Phys. Rev. D12 (1975) 3575.Google Scholar
  31. 31.
    J. D. Walecka, Nucl. Phys. A285 (1977) 345.Google Scholar
  32. 32.
    P. A. Souder et al., Phys. Rev. Lett. 65 (1990) 694.Google Scholar
  33. 33.
    R. D. McKeown and D. Beck et al., Bates Proposal #89-06.Google Scholar
  34. 34.
    J. O. Hansen et al., Preprint LNS-94-80, submitted for publication.Google Scholar
  35. 35.
    M. Meyerhoff et al., Phys. Lett. B327 (1994) 201.Google Scholar
  36. 36.
    A. Lung et al., Phys. Rev. Lett 70 (1993) 718.Google Scholar
  37. 37.
    S. Galster et al., Nucl. Phys. B32 (1971) 221.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Stanley Kowalski
    • 1
  1. 1.Bates Linear Accelerator Center Laboratory for Nuclear Science and Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations