Advertisement

Summary of π-π scattering experiments

  • Dinko Počanič
Part III π-π Interaction and the Chiral Anomaly
Part of the Lecture Notes in Physics book series (LNP, volume 452)

Abstract

The ππ scattering amplitude at threshold is fully determined by the chiral symmetry breaking part of the strong interaction, and, thus, directly constrains the form of the low energy effective lagrangians. Current status of the study of the low energy ππ interaction is discussed, particularly the recent results on reactions πN → ππN near threshold. Present levels of experimental uncertainties and limitations inherent to the available analysis methods leave ample room for improvements in the determination of the s-wave ππ scattering lengths. Experimental improvements are expected from new measurements of Ke4 decays and from attempts to study π+π atoms, while further theoretical work is required in order to make full use of the extensive near-threshold πNππN data that has recently become available.

Keywords

Total Cross Section Chiral Symmetry Chiral Symmetry Breaking Pion Field Exclusive Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weinberg, Physica 96A 327 (1979)Google Scholar
  2. 2.
    J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158 142 (1984); Nucl. Phys. B250 465 (1985)Google Scholar
  3. 3.
    Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 345 (1961); ibid. 124 246 (1961); For a review of recent work based on the NJL model see, e.g., S. P. Klevansky, Rev. Mod. Phys. 64 649 (1992)Google Scholar
  4. 4.
    S. Weinberg, Phys. Rev. Lett. 17 616 (1966), ibid. 18 188 (1967)Google Scholar
  5. 5.
    L. Rosselet, et al., Phys. Rev. D 15 574 (1977)Google Scholar
  6. 6.
    S. M. Roy, Phys. Lett. 35B 353 (1971)Google Scholar
  7. 7.
    J. L. Basdevant, J. C. Le Guillou and H. Navelet, Nuovo Cim. 7A 363 (1972)Google Scholar
  8. 8.
    J. L. Basdevant, C. G. Froggatt and J. L. Peterson, Nucl. Phys. B72 413 (1974)Google Scholar
  9. 9.
    M. M. Nagels, et al., Nucl. Phys. B147 189 (1979)Google Scholar
  10. 10.
    G. F. Chew and F. E. Low, Phys. Rev. 113 1640 (1959)Google Scholar
  11. 11.
    J. B. Baton, G. Laurens and J. Reignier, Phys. Lett. 33B 525 (1970)Google Scholar
  12. 12.
    S. D. Protopopescu et al., Phys. Rev. D 7 1279 (1973)Google Scholar
  13. 13.
    G. Grayer et al., Nucl. Phys. B75 189 (1974)Google Scholar
  14. 14.
    E. A. Alekseeva et al., Zh. Eksp. Teor. Fiz. 82 1007 (1982) [Sov. Phys. JETP 55 591 (1982)]Google Scholar
  15. 15.
    O. O. Patarakin and V. N. Tikhonov, Kurchatov Institute of Atomic Energy preprint IAE-5629/2 (1993)Google Scholar
  16. 16.
    M. G. Olsson and L. Turner, Phys. Rev. Lett. 20 1127 (1968); Phys. Rev. 181 2141 (1969), L. Turner, Ph. D. Thesis, Univ. of Wisconsin, 1969 (unpublished)Google Scholar
  17. 17.
    D. M. Manley, Phys. Rev. D 30 536 (1984)Google Scholar
  18. 18.
    G. Kernel, et al., Phys. Lett. B216 244 (1989); ibid. B225 198 (1989); Z. Phys. C 48 201 (1990); ibid. 51 377 (1991); in Particle Production Near Threshold Nashville, 1990, edited by H. Nann and E. J. Stephenson, (AIP, New York, 1991)Google Scholar
  19. 19.
    H.-W. Ortner et al. Phys. Rev. C 47 R447 (1993)Google Scholar
  20. 20.
    M. E. Sevior, et al. Phys. Rev. Lett. 66 2569 (1991)Google Scholar
  21. 21.
    J. Lowe, et al. Phys. Rev. C 44 956 (1991)Google Scholar
  22. 22.
    D. Polčanić, et al. Phys. Rev. Lett. 72 1156 (1994)Google Scholar
  23. 23.
    E. Frlež, Ph. D. Thesis, Univ. of Virginia, 1993 (Los Alamos Report LA-12663-T, 1993)Google Scholar
  24. 24.
    H. Burkhardt and J. Lowe, Phys. Rev. Lett. 67 2622 (1991)Google Scholar
  25. 25.
    H.-W. Ortner et al., Phys. Rev. Lett. 64 2759 (1990); R. Müller et al., Phys. Rev. C 48 981 (1993)Google Scholar
  26. 26.
    O. Jäkel H.-W. Ortner, M. Dillig and C. A. Z. Vasconcellos, Nucl. Phys. A511 733 (1990); O. Jäkel, M. Dillig and C. A. Z. Vasconcellos, ibid. A541 675 (1992); O. Jiikel and M. Dillig, ibid. A561 557 (1993)Google Scholar
  27. 27.
    A. A. Bolokhov, V. V. Vereshchagin and S. G. Sherman, Nucl. Phys. A530 660 (1991)Google Scholar
  28. 28.
    S. Weinberg, Phys. Rev. 166 1568 (1968)Google Scholar
  29. 29.
    J. Schwinger, Phys. Lett. 248 473 (1967)Google Scholar
  30. 30.
    P. Chang and F. Gürsey, Phys. Rev. 164 1752 (1967)Google Scholar
  31. 31.
    R. Jacob and M. D. Scadron, Phys. Rev. D 25 3073 (1982)Google Scholar
  32. 32.
    J. Gasser and H. Leutwyler, Phys. Lett. 125B 325 (1983)Google Scholar
  33. 33.
    A. N. Ivanov and N. I. Troitskaya, Yad. Fiz. 43 405 (1986) [Sov. J. Nucl. Phys. 43 260 (1986)]Google Scholar
  34. 34.
    D. Lohse, J. W. Durso, K. Holinde and J. Speth, Nucl. Phys. A516 513 (1990)Google Scholar
  35. 35.
    M. C. Ruivo, C. A. de Sousa, B. Hiller and A. H. Blin, Nucl. Phys. A575 460 (1994)Google Scholar
  36. 36.
    V. Bernard, U.-G. Mei\ner, A. H. Blin and B. Hiller, Phys. Lett. B253 443 (1991)Google Scholar
  37. 37.
    Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Phys. Rev. Lett. 71 2387 (1993)Google Scholar
  38. 38.
    C. D. Roberts, R. T. Cahill, M. E. Sevior and N. lannella, Phys. Rev. D 49 125 (1994)Google Scholar
  39. 39.
    J. R. Uretsky and T. R. Palfrey, Phys. Rev. 121 1798 (1961)Google Scholar
  40. 40.
    V. Bernard, N. Kaiser and Ulf-G. Mei\ner, preprint hep-ph/9404236 (1994)Google Scholar
  41. 41.
    A. Zylberstejn, Ph.D. thesis, University of Paris, Orsay, 1972 (unpublished)Google Scholar
  42. 42.
    E. W. Beier et al., Phys. Rev. Lett. 29 511 (1972); ibid. 30 399 (1973)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Dinko Počanič
    • 1
  1. 1.Department of PhysicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations