Explicit substitutions with de bruijn's levels

  • Pierre Lescanne
  • Jocelyne Rouyer-Degli
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 914)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional Programming, 1(4):375–416, 1991.Google Scholar
  2. 2.
    L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. Theoretical Computer Science, 67(2-3):173–202, October 1989.CrossRefGoogle Scholar
  3. 3.
    Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit substitutions which preserves strong normalisation. Submitted, December 1994.Google Scholar
  4. 4.
    P. Crégut. An abstract machine for the normalization of λ-calculus. In Proc. Conf. on Lisp and Functional Programming, pages 333–340. ACM, 1990.Google Scholar
  5. 5.
    P. Crégut. Machines à environnement pour la réduction symbolique et l'évaluation partielle. PhD thesis, Universite de PARIS 07, 1991.Google Scholar
  6. 6.
    P.-L. Curien, Th. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi of explicit substitutions. RR 1617, INRIA, Rocquencourt, February 1992.Google Scholar
  7. 7.
    H. B. Curry, R. Feys, and W. Craig. Combinatory Logic, volume 1. Elsevier Science Publishers B. V. (North-Holland), Amsterdam, 1958.Google Scholar
  8. 8.
    N. G. de Bruijn. Lambda calculus with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Proc. Koninkl. Nederl. Akademie van Wetenschappen, 75(5):381–392, 1972.Google Scholar
  9. 9.
    N. G. de Bruijn. Lambda calculus with namefree formulas involving symbols that represent reference transforming mappings. Proc. of the Koninklijke Nederlan Akademie, 81(3):1–9, September 1978. Dedicated to A. Heyting at the occasion his 80th Birrthday on May 9, 1978.Google Scholar
  10. 10.
    N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of expressions and segments. TH-Report 78-WSK-03, Technological University Eindhoven, Netherlands, Department of Mathematics, 1978.Google Scholar
  11. 11.
    N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 6, pages 244–320. Elseviere Science Publishers B. V. (North-Holland), 1990.Google Scholar
  12. 12.
    J. Field. On laziness and optimality in lambda interpreters: Tools for specification and analysis. In Proceedings of the 17th Annual ACM Symposium on Principles Of Programming Languages, Orlando (Fla., USA), pages 1–15, San Fransisco, 1990. ACM.Google Scholar
  13. 13.
    J. Field. Incremental Reduction in the Lambda Calculus and Related Reduction Systems. PhD thesis, Cornell U., November 1991.Google Scholar
  14. 14.
    Th. Hardin. Confluence results for the pure strong categorical combinatory logic CCL: λ-calculi as subsystems of CCL. Theoretical Computer Science, 65:291–342, 1989.CrossRefGoogle Scholar
  15. 15.
    M. Kurihara and A. Ohuchi. Modularity of simple termination of term rewriting systems. Journal of IPS Japan, 31(5):633–642, 1990.Google Scholar
  16. 16.
    P. Lescanne. From λσ to λυ, a journey through calculi of explicit substitutions. In Hans Boehm, editor, Proceedings of the 21st Annual ACM Symposium on Principles Of Programming Languages, Portland (Or., USA), pages 60–69. ACM, 1994.Google Scholar
  17. 17.
    P. Lescanne and J. Rouyer-Degli. The calculus of explicit substitutions λυ. Technical Report RR-2222, INRIA-Lorraine, January 1994.Google Scholar
  18. 18.
    P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In M. Dezani, editor, Int. Conf. on Typed Lambda Calculus and Applications, 1995.Google Scholar
  19. 19.
    A. Ríos. Contributions à l'étude des λ-calculs avec des substitutions explicites. Thèse de Doctorat d'Université, U. Paris VII, 1993.Google Scholar
  20. 20.
    T. Strahm. Partial applicative theories and explicit substitutions. Technical Report IAM 93-008, Univerität Bern, Institut für Informatik und angewandte Mathematik, June 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Pierre Lescanne
    • 1
  • Jocelyne Rouyer-Degli
    • 1
  1. 1.Centre de Recherche en Informatique de Nancy (CNRS) and INRIA-Lorraine Campus ScientifiqueVandœuvre-lès-NancyFrance

Personalised recommendations