Towards a domain theory for termination proofs

  • Stefan Kahrs
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 914)

Abstract

We present a general framework for termination proofs for Higher-Order Rewrite Systems. The method is tailor-made for having simple proofs showing the termination of enriched λ-calculi.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science, Vol.2, pages 117–309. Oxford Science Publications, 1992.Google Scholar
  2. 2.
    M. C. F. Ferreira and H. Zantema. Total termination of term rewriting. In Rewriting Techniques and Applications, pages 213–227, 1993. LNCS 690.Google Scholar
  3. 3.
    R. Gandy. Proofs of strong normalization. In J. Seldin and J. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 457–477. Academic Press, 1980.Google Scholar
  4. 4.
    G. Hessenberg. Grundbegriffe der Mengenlehre. Abhandlungen der Fries'schen Schule, pages 479–706, 1906.Google Scholar
  5. 5.
    S. MacLane. Categories for the Working Mathematician. Springer, 1971.Google Scholar
  6. 6.
    J. v. Neumann. Zur Einführung der transfiniten Zahlen. Acta litterarum ac scientarum, 1:199–208, 1923.Google Scholar
  7. 7.
    J. v. d. Pol. Termination proofs for higher-order rewrite systems. In Higher-Order Algebra, Logic, and Term Rewriting, pages 305–325, 1993. LNCS 816.Google Scholar
  8. 8.
    W. Sierpiński. Cardinal and Ordinal Numbers. Polish Scientific Publishers, 1965.Google Scholar
  9. 9.
    D. Wolfram. The Clausal Theory of Types. Cambridge University Press, 1993.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Stefan Kahrs
    • 1
  1. 1.Laboratory for Foundations of Computer ScienceUniversity of EdinburghEdinburghScotland

Personalised recommendations