Advertisement

A polynomial algorithm testing partial confluence of basic semi-Thue systems

  • Géraud Sénizergues
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 914)

Abstract

We give a polynomial algorithm solving the problem “is S partially confluent on the rational set R ?” for finite, basic, noetherian semi-Thue systems. The algorithm is obtained by a polynomial reduction of this problem to the equivalence-problem for deterministic 2-tape finite automata, which has been shown to be polynomially decidable in [Fri-Gre82].

Keywords

semi-Thue systems confluence two tape finite automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph reduction. J. ACM 40, pages 1134–1164, 1993.CrossRefGoogle Scholar
  2. 2.
    J.M. Autebert and L. Boasson. The equivalence of pre-NTS grammars is decidable. Math.Systems Theory 25, pages 61–74, 1992.CrossRefGoogle Scholar
  3. 3.
    J. Berstel and L. Boasson. Context-free languages. In Handbook of theoretical computer science, vol.B, Chapter 2, pages 59–102. Elsevier, 1991.Google Scholar
  4. 4.
    L. Boasson. Grammaires à non-terminaux séparés. In Proceedings 7th ICALP, pages 105–118. LNCS 85, 1980.Google Scholar
  5. 5.
    L. Boasson and G. Sénizergues. NTS languages are deterministic and congruential. JCSS 31, nr 3, pages 332–342, 1985.Google Scholar
  6. 6.
    R.V. Book, M. Jantzen, and C. Wrathall. Monadic Thue systems. TCS 19, pages 231–251, 1982.CrossRefGoogle Scholar
  7. 7.
    R.V. Book and F. Otto. String Rewriting Systems. Texts and monographs in Computer Science. Springer-Verlag, 1993.Google Scholar
  8. 8.
    H. Bücken. Reduction systems and small cancellation theory. In Proceedings 4th Workshop on Automated Deduction, pages 53–59, 1979.Google Scholar
  9. 9.
    P. Butzbach. Sur l'équivalence des grammaires simples. In Actes des Premières journées d'Informatique Théorique, Bonascre. ENSTA, 1973.Google Scholar
  10. 10.
    P. Butzbach. Une famille de congruences de Thue pour lesquelles l'équivalence est décidable. In Proceedings 1rst ICALP, pages 3–12. LNCS, 1973.Google Scholar
  11. 11.
    P. Le Chenadec. Canonical Forms in Finitely Presented Algebras. Research Notes in Theoretical Computer Science, Pitman Wiley & sons, 1986.Google Scholar
  12. 12.
    L. Chottin. Strict deterministic languages and controlled rewriting systems. In Proceedings 6th ICALP, pages 104–117. LNCS 71, Springer-Verlag, 1979.Google Scholar
  13. 13.
    Y. Cochet. Sur l'algébricité des classes de certaines congruences définies sur le monoide libre. Thèse de l'université de Rennes, 1971.Google Scholar
  14. 14.
    N. Dershowitz and J.P. Jouannaud. Rewrite systems. In Handbook of theoretical computer science, vol.B, Chapter 2, pages 243–320. Elsevier, 1991.Google Scholar
  15. 15.
    J. Engelfriet. Deciding the NTS-property of context-free grammars. Tech. report 94-05, Leiden university, pages 1–7, 1994. To appear in the proceedings of the conference on Important Results and Trends in Theoretical Computer Science, Graz, Austria, June 1994.Google Scholar
  16. 16.
    E.P. Friedman and S.A. Greibach. A polynomial algorithm for deciding the equivalence problem for 2-tape deterministic finite state acceptors. SIAM J. COMPUT., vol. 11, No 1, pages 166–183, 1982.CrossRefGoogle Scholar
  17. 17.
    S. Ginsburg and E.H. Spanier. Finite-turn Pushdown automata. J. SIAM Control, vol. 4, No 3, pages 429–453, 1966.CrossRefGoogle Scholar
  18. 18.
    P. Grosset-Grange. Décidabilité de la confluence partielle d'un système semi-Thuéien rationnel. Memoire de DEA de l'université de Bordeaux 1, pages 1–21, 1993.Google Scholar
  19. 19.
    T. Harju and J. Karhumäki. The equivalence problem of multitape finite automata. TCS 78, pages 347–355, 1991.CrossRefGoogle Scholar
  20. 20.
    G. Huet. Confluent reductions:abstract properties and applications to term rewriting systems. JACM vol. 27 no 4, pages 797–821, 1980.CrossRefGoogle Scholar
  21. 21.
    K. Madlener, P. Narendran, and F. Otto. A specialized completion procedure for monadic string-rewriting systems presenting groups. In Proceedings 18th ICALP, pages 279–290. Springer, LNCS No 510, 1991.Google Scholar
  22. 22.
    K. Madlener, P. Narendran, F. Otto, and L. Zhang. On weakly confluent monadic string-rewriting systems. TCS 113, pages 119–165, 1993.Google Scholar
  23. 23.
    P. Narendran. It is decidable whether a monadic Thue system is canonical over a regular set. Math. Systems Theory 23, pages 245–254, 1990.Google Scholar
  24. 24.
    M. Nivat. On some families of languages related to the Dyck language. 2nd Annual Symposium on Theory of Computing, 1970.Google Scholar
  25. 25.
    C. O'Dunlaing. Infinite regular Thue systems. TCS 2, pages 171–192, 1983.Google Scholar
  26. 26.
    F. Otto. On deciding the confluence of a finite string-rewriting system on a given congruence class. JCSS 35, pages 285–310, 1987.Google Scholar
  27. 27.
    F. Otto. The problem of deciding confluence on a given congruence class is tractable for finite special string-rewriting systems. Math. Systems Theory 25, pages 241–251, 1992.Google Scholar
  28. 28.
    J. Sakarovitch. Syntaxe des langages de Chomsky, essai sur le déterminisme. Thèse de doctorat d'état de l'université Paris VII, pages 1–175, 1979.Google Scholar
  29. 29.
    G. Sénizergues. The equivalence problem for NTS languages is decidable. In Proceedings 6th G.I. Symposium on Theoretical Computer Science, pages 313–323. LNCS Springer-Verlag, nr 145, 1982.Google Scholar
  30. 30.
    G. Sénizergues. The equivalence and inclusion problems for NTS languages. J. Comput. System Sci. 31(3), pages 303–331, 1985.Google Scholar
  31. 31.
    G. Sénizergues. Sur la description des langages algébriques deterministes par des systèmes de réécriture confluents. Thèse d'état, université Paris 7 et rapport LITP 88-39, pages 1–330, 1987.Google Scholar
  32. 32.
    G. Sénizergues. Church-Rosser controlled rewriting systems and equivalence problems for deterministic context-free languages. Information and Computation 81(3), pages 265–279, 1989.Google Scholar
  33. 33.
    G. Sénizergues. A characterisation of deterministic context-free languages by means of right-congruences. TCS 70 (2), pages 213–232, 1990.Google Scholar
  34. 34.
    G. Sénizergues. Some decision problems about controlled rewriting systems. TCS 71, pages 281–346, 1990.Google Scholar
  35. 35.
    L. Zhang. Weak confluence is tractable for finite string-rewriting systems, preprint, pages 1–10, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  1. 1.LaBRIUniversité de Bordeaux ITalenceFrance

Personalised recommendations