A complete characterization of termination of 0p 1q→1r 0s

  • Hans Zantema
  • Alfons Geser
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 914)


We characterize termination of one-rule string rewriting systems of the form 0p 1q → 1r 0s for every choice of positive integers p, q, r, and s. For the simply terminating cases, we give the precise complexity of derivation lengths.


string rewriting term rewriting termination simple termination transformation ordering dummy elimination derivation length 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leo Bachmair and Nachum Dershowitz. Commutation, transformation, and termination. In 8th Int. Conf. Automated Deduction, pages 5–20. Springer LNCS 230, 1985.Google Scholar
  2. 2.
    Françoise Bellegarde and Pierre Lescanne. Transformation ordering. In 2nd TAP-SOFT, pages 69–80. Springer LNCS 249, 1987.Google Scholar
  3. 3.
    Françoise Bellegarde and Pierre Lescanne. Termination by completion. Applicable Algebra in Engineering, Communication, and Computing, 1:79–96, 1990.Google Scholar
  4. 4.
    Ronald Book and Friedrich Otto. String-rewriting systems. Texts and Monographs in Computer Science. Springer, New York, 1993.Google Scholar
  5. 5.
    Max Dauchet. Simulation of turing machines by a left-linear rewrite rule. In Proc. 3rd Int. Conf. Rewriting Techniques and Applications, pages 109–120. LNCS 355, 1989.Google Scholar
  6. 6.
    Nachum Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science, 17(3):279–301, March 1982.CrossRefGoogle Scholar
  7. 7.
    Nachum Dershowitz. Termination of rewriting. J. Symbolic Computation, 3(1&2):69–115, Feb./April 1987. Corrigendum: 4, 3, Dec. 1987, 409–410.Google Scholar
  8. 8.
    Nachum Dershowitz and Charles Hoot. Topics in termination. In Claude Kirchner, editor, 5th Int. Conf. Rewriting Techniques and Applications, pages 198–212. Springer LNCS 690, 1993.Google Scholar
  9. 9.
    Maria C. F. Ferreira and Hans Zantema. Dummy elimination: Making termination easier. Technical Report UU-CS-1994-47, Utrecht University, October 1994. Available via Scholar
  10. 10.
    Alfons Geser. Relative termination. Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany, 1990. Also available as: Report 91-03, Ulmer Informatik-Berichte, Universität Ulm, 1991.Google Scholar
  11. 11.
    Alfons Geser. A solution to Zantema's problem. In Rudolf Berghammer and Gunther Schmidt, editors, Proc. coll. “Programmiersprachen und Grundlagen der Programmierung”, pages 88–96, Bericht Nr. 9309, Univ. der Bundeswehr, Neubiberg, Germany, December 1993. Also appeared as report MIP-9314, Universität Passau, Germany, December 1993.Google Scholar
  12. 12.
    Gérard Huet and Dallas Lankford. On the uniform halting problem for term rewriting systems. Technical Report 283, INRIA, 1978.Google Scholar
  13. 13.
    Matthias Jantzen. Confluent string rewriting, volume 14 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1988.Google Scholar
  14. 14.
    Dallas S. Lankford. On proving term rewriting systems are noetherian. Technical Report MTP-3, Louisiana Technical University, Math. Dept., Ruston, LA, 1979.Google Scholar
  15. 15.
    Robert McNaughton. The uniform halting problem for one-rule Semi-Thue Systems. Technical Report 94-18, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, August 1994.Google Scholar
  16. 16.
    Vincent Meeussen and Hans Zantema. Derivation lengths in term rewriting from interpretations in the naturals. In H. A. Wijshoff, editor, Computing Science in the Netherlands, pages 249–260, November 1993. Also appeared as report RUU-CS-92-43, Utrecht University.Google Scholar
  17. 17.
    Elias Tahhan-Bittar. Non-erasing, right-linear orthogonal term rewrite systems, application to Zantema's problem. Technical Report RR2202, INRIA, France, 1994.Google Scholar
  18. 18.
    Hans Zantema. Termination of rewriting by semantic labelling. Technical Report RUU-CS-92-38, Utrecht University, December 1992. Extended and revised version appeared as RUU-CS-93-24, July 1993, accepted for special issue on term rewriting of Fundamenta Informaticae.Google Scholar
  19. 19.
    Hans Zantema. Termination of term rewriting: interpretation and type elimination. J. Symbolic Computation, 17:23–50, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Hans Zantema
    • 1
  • Alfons Geser
    • 2
  1. 1.Universiteit UtrechtUtrechtThe Netherlands
  2. 2.Lehrstuhl für ProgrammiersystemeUniversität PassauPassauGermany

Personalised recommendations