Lower bounds for modular counting by circuits with modular gates

  • David Mix Barrington
  • Howard Straubing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 911)


We prove that constant depth circuits, with one layer of MOD m gates at the inputs, followed by a fixed number of layers of MOD p gates, where p is prime, require exponential size to compute the MOD q function, if q is a prime that divides neither p nor q.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    M. Ajtai, “Σ11 formulae on finite structures”, Annals of Pure and Applied Logic 24 (1983) 1–48.CrossRefGoogle Scholar
  2. 2.
    D. Mix Barrington, H. Straubing, and D. Thérien, “Nonuniform Automata over Groups”, Information and Computation 89 (1990) 109–132.CrossRefGoogle Scholar
  3. 3.
    J. Bruck, “Harmonic Analysis of Polynomial Threshold Functions”, SIAM Journal of Discrete Mathematics 3 (1990) 168–177.CrossRefGoogle Scholar
  4. 4.
    M. Furst, J. Saxe, and M. Sipser, “Parity, Circuits, and the Polynomial Time Hierarchy”, J. Math Systems Theory 17 (1984) 13–27.CrossRefGoogle Scholar
  5. 5.
    M. Krause and P. Pudlák, “On the Computational Power of Depth 2 Circuits with Threshold and Modulo Gates”, Proc. 26th ACM STOC (1994) 48–57.Google Scholar
  6. 6.
    P. McKenzie, P. Péladeau, and D. Thérien, NC 1: “The Automata-Theoretic Approach”, to appear in Theoretical Computer Science.Google Scholar
  7. 7.
    R. Smolensky, “Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity”, Proc. 19th ACM STOC (1987) 77–82.Google Scholar
  8. 8.
    H. Straubing, “Constant-depth Periodic Circuits”, International J. Algebra and Computation 1 (1991) 49–88.CrossRefGoogle Scholar
  9. 9.
    H. Straubing, Finite Automata, Formal Logic and Circuit Complexity, Birkhäuser, Boston, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • David Mix Barrington
    • 1
  • Howard Straubing
    • 2
  1. 1.COINS DepartmentUniversity of MassachusettsAmherstUSA
  2. 2.Computer Science DepartmentBoston CollegeChestnut HillUSA

Personalised recommendations