Non-erasing turing machines: A new frontier between a decidable halting problem and universality

  • Maurice Margenstern
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 911)


We define a new criterion which allows to separate cases when all non erasing Turing machines on {0, 1} have a decidable halting problem from cases where a universal non erasing machine can be constructed. It is the case of the number of left instructions in the machine program. In this paper we give the main ideas of the proof for both parts of the frontier result. We prove that there is a universal non-erasing Turing machine whose program has precisely 3 left instructions and that the halting problem is decidable for any non-erasing Turing machine on alphabet {0, 1}, the program of which contains at most 2 left instructions. For this latter result, we have a uniform decision algorithm.

Key words

computability Turing machines tag-systems halting problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Margenstern M. Sur la frontière entre machines de Turing à arrêt décidable et machines de Turing universelles. LITP research report N°92.83 (Institut Blaise Pascal) (1992)Google Scholar
  2. 2.
    Margenstern M. Turing machines: on the frontier between a decidable halting problem and universality. Lecture Notes in Computer Science, 710, pp. 375–385, (1993)Google Scholar
  3. 3.
    Margenstern M. Décidabilité du problème de l'arrêt pour les machines de Turing non-effaçante sur {0, 1} et à deux instructions gauches. LITP research report N°94.03 (Institut Blaise Pascal) (1994)Google Scholar
  4. 4.
    Margenstern M. Une machine de Turing universelle sur {0, 1}, non-effaçante et à trois instructions gauches. LITP research report N°94.08 (Institut Blaise Pascal) (1994)Google Scholar
  5. 5.
    Margenstern M. Une machine de Turing universelle non-effaçante à exactement trois instructions gauches. (note to appear in CRAS, Paris)Google Scholar
  6. 6.
    Minsky M.L. Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, N.J. (1967)Google Scholar
  7. 7.
    Павлоцкая Л.М. Разрешимостя проблемы остановки для некоторых классов машин Тяуринга. Математические Заметки, 13, (6), 899–909, Иуня 1973 899–909. (transl. Solvability of the halting problem for certain classes of Turing machines, Notes of the Acad. Sci. USSR, 13 (6) Nov.1973, 537–541)Google Scholar
  8. 8.
    Павлоцкая Л.М. О минималяном числе различных кодов вершин в граφе универсаляной машины Тяуринга. Дискретный анализ, Сборник трудов института математики CO AH CCCP, 27, 52–60, 1975. (On the minimal number of distinct codes for the vertices of the graph of a universal Turing machine, in Russian)Google Scholar
  9. 9.
    Рогожин Ю.В. Семя универсаляных машин Тяуринга. Математические Исследования, 69, 76–90, 1982 (Seven universal Turing machines) (in Russian)Google Scholar
  10. 10.
    Рогожин Ю.В. Универсаляная машина Тяуринга с 10 состояниями и 3 символами. Известия АН РМ Математика, 4 (10), 80–82, 1992 (A universal Turing machine with 10 states and 3 symbols) (in Russian)Google Scholar
  11. 11.
    Shannon C.E. A universal Turing machine with two internal states. Ann. of Math. Studies, 34, 157–165, (1956)Google Scholar
  12. 12.
    Turing A.M. On computable real numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc, ser. 2, 42, 230–265 (1936)Google Scholar
  13. 13.
    Wang H. Tag Systems and Lag Systems, Math. Annalen, 152, 65–74, (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Maurice Margenstern
    • 1
  1. 1.Institut Blaise PascalUniversité Paris-Sud and LITPFrance

Personalised recommendations