On the complexity of computing the greatest common divisor of several univariate polynomials

  • Laureano González-Vega
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 911)


This paper is devoted to present a deterministic algorithm computing the greatest common divisor of several univariate polynomials with coefficients in an integral domain with the best known complexity bound when integer coefficients are considered. More precisely, if n is a bound for the degree of the t+1 integer polynomials whose greatest common divisor is to be computed and M is a bound for the size of those polynomials then such greatest common divisor is computed by means of O(tn3) arithmetic operations involving integers whose size is in O(n4M) (which is independent of t).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Akritas: Elements of Computer Algebra with Applications. Wiley-Interscience (1989).Google Scholar
  2. 2.
    S. Berkowitz: On computing the determinant in small parallel time with a small number of processors. Information Processing Letters, 18 (1984).Google Scholar
  3. 3.
    W. S. Brown and J. F. Traub: On Euclid's algorithm and the theory of subresultants. Journal of Association for Computing Machinery, 118, 505–514 (1971).Google Scholar
  4. 4.
    S. Barnett: Polynomials and Linear Control Systems. Marcel Dekker, Inc.Google Scholar
  5. 5.
    S. Barnett: Greatest common divisor of several polynomials. Proc. Cambridge Philos. Soc., 70, 263–268 (1971).Google Scholar
  6. 6.
    S. Barnett: Degrees of greatest common divisors of invariant factors of two regular polynomial matrices. Proc. Camb. Phil. Soc., 66, 241–245 (1970).Google Scholar
  7. 7.
    G. E. Collins: Subresultants and reduced polynomial remainder sequences. Journal of Association for Computing Machinery, 14, 128–142 (1967).Google Scholar
  8. 8.
    J. von zur Gathen: Parallel algorithms for algebraic problems. Siam Journal on Computing, 13, 4, 802–824 (1984).Google Scholar
  9. 9.
    L. González-Vega, H. Lombardi, T. Recio and M.-F. Roy: Specialisation de la suite de Sturm et sous-resultants. Informatique Theorique et Applications, 24, 6, 561–588 (1990).Google Scholar
  10. 10.
    L. González-Vega: An elementary proof of Barnett's Theorem about the greatest common divisor of several univariate polynomials. Submitted to Linear Algebra and Applications (1994).Google Scholar
  11. 11.
    V. W. Habicht: Eine Verallgemeinerung des Sturmschen Wurzelzahlverfahrens. Comm. Math. Helvetici, 21, 99–116 (1948).Google Scholar
  12. 12.
    C. Ho: Topics in Algebraic Computing: Subresultants, GCD, factoring, and primary ideal decomposition. Ph. D. Thesis. Courant Institute of Mathematical Sciences. New York (1989).Google Scholar
  13. 13.
    D. Ierardi and D. Kozen: Parallel resultant computation. Synthesis of Parallel Algorithms, ed. J. Reif, Morgan Kaufmann. Also technical report 90-1987, Department of Computer Science, Cornell University (1990).Google Scholar
  14. 14.
    R. E. Kalman. Some computational problems and méthods related to invariant factors and control theory. Computational Problems in Abstract Algebra, ed. J. Leech, Pergamon Press, 393–398 (1970).Google Scholar
  15. 15.
    D. Knuth: The art of computer programming II: Seminumerical Algorithms. Reading Mass., first edition 1969, second edition 1982.Google Scholar
  16. 16.
    J. LLovet and J. R. Sendra: An Extended Polynomial GCD Algorithm using Hankel Matrices. Journal of Symbolic Computation, 13(1), 25–39 (1992).Google Scholar
  17. 17.
    H. Lombardi: Algebre Élémentaire en temps polynomial. Ph. D. Thesis. University of Nice (1989).Google Scholar
  18. 18.
    R. Loos: Generalized polynomial remainder sequences. Computer Algebra, Computing Suplementum 4, Springer Verlag, 115–138 (1982).Google Scholar
  19. 19.
    C. C. MacDuffee: Some applications of matrices in the theory of equations. American Mathematical Monthly, 57, 154–161 (1950).Google Scholar
  20. 20.
    M. Mignotte: Mathematics for Computer Algebra. Springer-Verlag (1992).Google Scholar
  21. 21.
    M. Mignotte: Some useful bounds. Computer Algebra, ed. B. Buchberger, G.E. Collins and R. Loos, pag. 259–263. Computing Suplementum 4, Springer Verlag, NY (1982).Google Scholar
  22. 22.
    K. Mulmuley: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica, 7(1), 101–104 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Laureano González-Vega
    • 1
  1. 1.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations