Skip to main content

Driven tunneling: New possibilities for coherent and incoherent quantum transport

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 445))

Abstract

We study the conservative as well as the dissipative quantal dynamics in a harmonically driven, quartic double-well potential. In the deep quantal regime, we find coherent modifications of tunneling, including its complete suppression. In the semiclassical regime of the conservative system, the dynamics is dominated by the interplay of tunneling and chaotic diffusion. A strong correlation exists between the tunnel splittings and the overlaps of the associated doublet states with the chaotic layer. With weak dissipation, remnants of coherent behaviour occur as transients, such as the tunneling between symmetry-related pairs of limit cycles. The coherent suppression of tunneling observed in the conservative case is stabilized by weak incoherence. The quantal stationary states are broadened anisotropically due to quantum noise, as compared to the corresponding classical attractors.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Chakravarty and S. Kivelson, Phys. Rev. B 32 76 (1985).

    Google Scholar 

  2. M. H. Devoret, D. Estéve, J. M. Martinis, A. Cleland, and J. Clarke, Phys. Rev. B 36 58 (1987); J. Clarke, A. N. Cleland, M. H. Devoret, D. Estéve, and J. M. Martinis, Science 239 992 (1988).

    Google Scholar 

  3. R. Bavli and H. Metiu, Phys. Rev. Lett. 69 1986 (1992).

    Google Scholar 

  4. J. E. Combariza, B. Just, J. Manz, and G. K. Parainonov, J. Phys. Chem. 95 10351 (1992).

    Google Scholar 

  5. L. M. Sander and H. B. Shore, Phys. Rev. B 3 1472 (1969).

    Google Scholar 

  6. P. Holmes, Philos. Trans. R. Soc. London, Ser. A 292 419 (1979).

    Google Scholar 

  7. B. A. Huberman and J. P. Crutchfield, Phys. Rev. Lett. 43 1743 (1979).

    Google Scholar 

  8. Y. Ueda, J. Stat. Phys. 20 181 (1979); Ann. N.Y. Acad. Sci. 357 422 (1980).

    Google Scholar 

  9. W. Szempliriska-Stupnicka, Nonlinear Dynamics 3 225 (1992).

    Google Scholar 

  10. F. Hund, Z. Phys. 43, 803 (1927).

    Google Scholar 

  11. F. Grossmann, P. Jung, T. Dittrich, and P. Hinggi, Z. Phys. B 84 315 (1991); Phys. Rev. Lett. 67 516 (1991);.

    Google Scholar 

  12. F. Grossmann, T. Dittrich, and P. Hänggi, Physica B 175 293 (1991).

    Google Scholar 

  13. F. Grossmann and P. Häggi, Europhys. Lett. 18 571 (1992).

    Google Scholar 

  14. F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, J. Stat. Phys. 70 229 (1993).

    Google Scholar 

  15. T. Dittrich, F. Grossmann, P. Jung, B. Oelschlägel, and P. Hänggi, Physica A 194 173 (1993).

    Google Scholar 

  16. B. Oelschlägel, T. Dittrich, and P. Hänggi, Act. Phys. Pol. B 24 845 (1993); Europhys. Lett. 22 5 (1993).

    Google Scholar 

  17. R. Utermann, T. Dittrich, and P. Hänggi, Phys. Rev. E 49 273 (1994); Physica B 194–196 1013 (1994).

    Google Scholar 

  18. T. Dittrich, F. Großmann, P. Hänggi, B. Oelschlägel, R. Utermann, in Proc. of the Third Max Born Symposium Stochasticity and Quantum Chaos, ed. by Z. Haba (Kluwer Academic, Dordrecht, in print).

    Google Scholar 

  19. J. H. Shirley, Phys. Rev. 138B 979 (1965).

    Google Scholar 

  20. H. Sambe, Phys. Rev. A 7 2203 (1973).

    Google Scholar 

  21. N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Phys. Rep. 141 319 (1986).

    Google Scholar 

  22. S. Chu, Adv. Chem. Phys. 73 739 (1989).

    Google Scholar 

  23. A. Peres, Phys. Rev. Lett. 67 158 (1991).

    Google Scholar 

  24. J. von Neumann and E. Wigner, Phys. Z. 30 467 (1929).

    Google Scholar 

  25. J. M. Gomez Llorente and J. Plata, Phys. Rev. A 45 R6958 (1992).

    Google Scholar 

  26. L. Wang and J. Shao, Phys. Rev. A 49 R637 (1994).

    Google Scholar 

  27. L. E. Reichl and W. M. Zheng, in Directions in Chaos, vol. 1, ed. by H. B. Lin (World Scientific, Singapore 1987), p.17.

    Google Scholar 

  28. M. J. Davis and E. J. Heller, J. Chem. Phys. 75 246 (1986).

    Google Scholar 

  29. O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lett. 64, 1479 (1990); ibid. 65 5 (1990).

    Google Scholar 

  30. S. Tomsovic and D. Ullmo, Tunneling in the Presence of Chaos, preprint 1990.

    Google Scholar 

  31. O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223 43 (1993).

    Google Scholar 

  32. W. A. Lin and L. E. Ballentine, Phys. Rev. Lett. 65, 2927 (1990); Phys. Rev. A 45 3637 (1992).

    Google Scholar 

  33. J. Plata and J. M. Gomez Llorente, J. Phys. A 25 L303 (1992).

    Google Scholar 

  34. H. P. Breuer and M. Holthaus, Ann. Phys. (N.Y.) 211 249 (1991).

    Google Scholar 

  35. M. V. Berry and M. Robnik, J. Phys. A 17 2413 (1984).

    Google Scholar 

  36. K. Husimi, Proc. Phys. Math. Soc. Jap. 22 264 (1940).

    Google Scholar 

  37. L. E. Reichl, in The Transition to Chaos: In Conservative and Classical Systems: Quantum Manifestations (Springer, New York 1992), Chaps. 3.9, 9.5.1, and refs. therein.

    Google Scholar 

  38. W. P. Reinhardt, J. Phys. Chem. 86, 2158 (1982); R. B. Shirts and W. P. Reinhardt, J. Chem. Phys. 77 5204 (1982).

    Google Scholar 

  39. H. Haken, vol. XXV/2c of Encyclopedia of Physics, edited by S. Flügge (Springer, Berlin 1970).

    Google Scholar 

  40. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, London 1973).

    Google Scholar 

  41. R. Blümel, A. Buchleitner, R. Graham, L. Sirko, U. Smilansky, and H. Walther, Phys. Rev. A 44 4521 (1991).

    Google Scholar 

  42. B. Oelschlägel, Ph.D. thesis, University of Augsburg, unpublished (1993).

    Google Scholar 

  43. M. J. Gagen, H. M. Wiseman, and G. J. Milburn, Phys. Rev. A 48 132 (1993).

    Google Scholar 

  44. R. Graham and A. Schenzle, Phys. Rev. A 26 1676 (1982).

    Google Scholar 

  45. M. Lücke and F. Schank, Phys. Rev. Lett. 54 1465 (1985).

    Google Scholar 

  46. T. Dittrich and R. Graham, Europhys. Lett. 4 263 (1987); Ann. Phys. (N.Y.) 200 363 (1990).

    Google Scholar 

  47. F. Grossmann and P. Hänggi, Europhys. Lett. 18 1 (1992); Chem. Phys. 170 295 (1993).

    Google Scholar 

  48. C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, Physics Letters 99A 415 (1983); S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, Physica D 17 125 (1985).

    Google Scholar 

  49. F. Moss, Ber. Bunsenges. Phys. Chem. 95 303 (1991), and refs. therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. J. Brey J. Marro J. M. Rubí M. San Miguel

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Dittrich, T., Hänggi, P., Oelschlägel, B., Utermann, R. (1995). Driven tunneling: New possibilities for coherent and incoherent quantum transport. In: Brey, J.J., Marro, J., Rubí, J.M., San Miguel, M. (eds) 25 Years of Non-Equilibrium Statistical Mechanics. Lecture Notes in Physics, vol 445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59158-3_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-59158-3_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59158-0

  • Online ISBN: 978-3-540-49203-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics