Advertisement

Linear constraint solving in CLP-Languages

  • Jean -Louis J. Imbert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 910)

Abstract

Linear constraint solving in Constraint Logic Programming languages rests on rewriting constraints under syntaxic forms. These syntaxic forms are generally called solved forms, since a satisfiable linear constraint system can be rewritten under one of these forms, and reciprocally, a linear constraint system of one of these forms is satisfiable. This paper aims to present three different solved forms two of which are used in the main CLP languages with linear constraints CHIP, CLP(R) and Prolog III. The third form was proposed by JL. Imbert and P. Van Hentenryck in 1991 [8]. We discuss the advantages and disadvantages of each and present the results of some comparative tests.

Keywords

Solved Forms Constraint Logic Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Colmerauer, H. Kanoui, R. Pasero and P. Roussel. “Un système de communication en français”. Rapport préliminaire de fin de contrat IRIA, Groupe Intelligence Artificielle, Faculté des Sciences de Luminy, Université Aix-Marseille II, France, October 1972.Google Scholar
  2. 2.
    A. Colmerauer. “Equations and Inequations on Finite and Infinite Trees”. In Proceedings of the International Conference on Fifth Generation Computer Systems (FGCS-84), pages 85–99, Tokyo, Japan, November 1984. ICOT.Google Scholar
  3. 3.
    A. Colmerauer. “Opening the Prolog III Universe”. In BYTE, August 1987, p177-182.Google Scholar
  4. 4.
    M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier. “The Constraint Logic Programming Language CHIP”. In Proceedings of the International Conference on Fifth Generation Computer Systems, Tokyo, Japan, December 1988.Google Scholar
  5. 5.
    S. Friedberg, A. Insel and L. Spence. “Linear Algebra”. Prentice-Hall 1979.Google Scholar
  6. 6.
    JL. Imbert. “Solved Forms for Linear Constraints in CLP-languages”. In P. Jorrand and V. Sgurev, editors, Proceedings of the Sixth International Conference on Artificial Intelligence: Methodology, Systems and Applications, AIMSA'94, p 77–90. Sofia, Bulgaria. World Scientific. September 1994.Google Scholar
  7. 7.
    JL. Imbert, J. Cohen and MD. Weeger. “An Algorithm for Linear Constraint Solving: Its Incorporation in a Prolog Meta-Interpreter for CLP”. In Journal of Logic Programming. Special issue on Constraint Logic Programming. Vol. 16, Nos 3 and 4, July–August 1993.Google Scholar
  8. 8.
    JL. Imbert and P. Van Hentenryck. “On the Handling of Disequations in CLP over Linear Rational Arithmetic”. In F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming: Selected Research, p 49–71, MIT Press, Cambridge, USA. Sept 1993.Google Scholar
  9. 9.
    J. Jaffar, JL. Lassez. “Constraint Logic Programming”. Technical Report 86/73. Dept. of computer science. Monash University (June 1986).Google Scholar
  10. 10.
    J. Jaffar, S. Michaylov. “Methodology and Implementation of a CLP System”. In Proceedings of the Logic Programming Conference. Melbourne, 1987. M.I.T. Press.Google Scholar
  11. 11.
    R.A. Kowalski and D. Kuehner. “Linear Resolution with Selection Function”. Memo 78, University of Edinburgh, School of Artificial Intelligence, 1971.Google Scholar
  12. 12.
    R.A. Kowalski. “Predicate Logic as Programming Language”, in Proceedings of IFIP 1974, North Holland Publishing Company, Amsterdam, pp. 569–574, 1974.Google Scholar
  13. 13.
    R.A. Kowalski and M. Van Emden. “The Semantic of Predicate Logic as Programming Language”, in JACM 22, 1976, pp. 733–742.Google Scholar
  14. 14.
    JL. Lassez and K. McAloon. “Independance of Negative Constraints”. In TAP-SOFT 89, Advanced seminar on Foundations of innovative Software development, Lecture Notes in Computer Science 351, springer Verlag 1989.Google Scholar
  15. 15.
    JL. Laurière. “Un langage et un problème pour énoncer et résoudre des problèmes combinatoires”. Ph.D. Thesis, University Pierre et Marie Curie, Paris, May 1976.Google Scholar
  16. 16.
    JL. Laurière. “A Language and a Program for Stating and Solving Combinatorial Problems”. In Artificial Intelligence, 10(1): p 29–127, 1978.Google Scholar
  17. 17.
    A.K. Mackworth. “Consistency in Networks of Relations”. In AI Jour 8(1): p 99–118, 1977.Google Scholar
  18. 18.
    J.A. Robinson. “A Machine-Oriented Logic Based on the Resolution Principle”. Journal of the ACM 12, 1, pp. 23–41, January 1965.Google Scholar
  19. 19.
    N. Singer. “Résolutions incrémentale de contraintes linéaires sur les nombres rationnels”. mémoire de DEA, GIA, Faculté des sciences de Luminy, Marseille, 1993.Google Scholar
  20. 20.
    G.L. Steele. “The Definition and Implementation of a Computer programming Language based on Constraints”. Ph.D. Thesis, MIT, USA. August 1980.Google Scholar
  21. 21.
    G.J. Sussman and G.L. Steele. “CONSTRAINTS. A language for Expressing Almost-Hierarchical Descriptions” In AI Journal, 14(1), 1980.Google Scholar
  22. 22.
    P. Van Hentenryck and T. Graf. Standard Forms for Rational Linear Arithmetics in Constraint Logic Programming. Annals of Mathematics and Artificial Intelligence, 1992.Google Scholar
  23. 23.
    JF. Verrier. “Résolutions numériques en programmation logique par contraintes”. mémoire de DEA, GIA, Faculté des sciences de Luminy, Marseille, 1992.Google Scholar
  24. 24.
    D. Waltz. “Generating Semantic Descriptions from Drawings of Scenes with Shadows”. Technical Report AI271, MIT, MA, USA. November 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Jean -Louis J. Imbert
    • 1
  1. 1.Laboratoire d'Informatique de Clermont-Ferrand Les CezeauxAubiere CedexFrance

Personalised recommendations