Cartesian products of graphs as spanning subgraphs of de Bruijn graphs

Extended abstract
  • Thomas Andreae
  • Michael Nölle
  • Gerald Schreiber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 903)


For Cartesian products G=G1×⋯× G m (m≥2) of nontrivial connected graphs G i and the n-dimensional base B de Bruijn graph D=D B (n), we investigate whether or not there exists a spanning subgraph of D which is isomorphic to G. We show that G is never a spanning subgraph of D when n is greater than three or when n equals three and m is greater than two. For n=3 and m=2, we can show for wide classes of graphs that G cannot be a spanning subgraph of D. In particular, these non-existence results imply that D B (n) never contains a torus (i.e., the Cartesian product of m≥2 cycles) as a spanning subgraph when n is greater than two. For n=2 the situation is quite different: we present a sufficient condition for a Cartesian product G to be a spanning subgraph of D=D B (2). As one of the corollaries we obtain that a torus G=G1×⋯× G m is a spanning subgraph of D=D B (2) provided that ∥G∥=∥D∥ and that the G i are even cycles of length ≥4. In addition we apply our results to obtain embeddings of relatively small dilation of popular processor networks (as tori, meshes and hypercubes) into de Bruijn graphs of fixed small base.


de Bruijn graphs Cartesian product graph embeddings dilation processor networks parallel image processing and pattern recognition massively parallel computers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. Macmillian, London, Great Britan, 1977.Google Scholar
  2. 2.
    H. Burkhardt, B. Lang, and M. Nölle. Aspects of Parallel Image Processing Algorithms and Structures. pages 65–84. ESPRIT BRA 3035 Workshop, Bonas (F), August 1990, North-Holland, 1991.Google Scholar
  3. 3.
    F.T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kaufman Publishers, San Matio, California, 1992.Google Scholar
  4. 4.
    B. Monien and H. Sudborough. Embedding one interconnection network in another. Computing Suppl., Springer Verlag, 7:257–282, 1990.Google Scholar
  5. 5.
    M. Nölle. Konzepte zur Entwicklung paralleler Algorithmen der digitalen Bildverarbeitung. PhD thesis, Technische Universität Hamburg-Harburg, 1994. In preparation.Google Scholar
  6. 6.
    M. Nölle and G. Schreiber. Einbettung von Gitter-Algorithmen in de Bruijn-Graphen. 3. PASA Workshop Bonn, in Mitteilungen-Gesellschaft für Informatik e.V., pages 12–19, April 1993.Google Scholar
  7. 7.
    D. Sotteau M.C. Heydemann, J. Opatrny. Embeddings of hypercubes and grids into de Bruijn graphs. Proceedings of the 1992 International Conference on Parallel Processing, 3:28–37, August 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Thomas Andreae
    • 1
  • Michael Nölle
    • 2
  • Gerald Schreiber
    • 2
  1. 1.Mathematisches SeminarUniversität HamburgHamburgGermany
  2. 2.Technische Informatik ITechnische Universität Hamburg-HarburgHamburgGermany

Personalised recommendations