• T. Kloks
  • D. Kratsch
  • H. Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 903)


A graph is called a domino if every vertex is contained in at most two maximal cliques. The class of dominoes properly contains the class of line graphs of bipartite graphs, and is in turn properly contained in the class of claw-free graphs. We give some characterizations of this class of graphs, show that they can be recognized in linear time, give a linear time algorithm for listing all maximal cliques (which implies a linear time algorithm computing a maximum clique of a domino) and show that the PATHWIDTH problem remains NP-complete when restricted to the class of chordal dominoes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beineke, L. W., On derived graphs and digraphs, In: H. Sachs, H. J. Voss and H. Walther, eds., Beiträge zur Graphentheorie, Teubner, Leipzig, (1968), pp. 17–23.Google Scholar
  2. 2.
    Berge, C., Hypergraphs, North Holland, 1989.Google Scholar
  3. 3.
    Bermond, J. C. and J. C. Meyer, Graphe représentatif des arêtes d'un multigraphe, J. Math. Pures Appl. 52, (1973), pp. 299–308.Google Scholar
  4. 4.
    Bodlaender, H. L., A tourist guide through treewidth, Acta Cybernetica 11, (1993), pp. 226–234.Google Scholar
  5. 5.
    Cameron, P. J., J. M. Goethals, J. J. Seidel and E. E. Shult, Linegraphs, root systems and elliptic geometry, J. Algebra 43, (1976), pp. 305–327.Google Scholar
  6. 6.
    Chaudhuri, P., An algorithm for finding all triangles in a digraph in parallel, Pure and Applied Mathematika Sciences, Vol. XXV, (1987), pp. 27–35.Google Scholar
  7. 7.
    Chiba, N. and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput. 14, (1985), pp. 210–223.Google Scholar
  8. 8.
    Biggs, N., Algebraic graph theory, Cambridge University Press, (1993).Google Scholar
  9. 9.
    Fiorini, S. and R. J. Wilson, Edge colorings of graphs, Pitman, London, (1977).Google Scholar
  10. 10.
    Fulkerson, D. R. and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15, (1965), pp. 835–855.Google Scholar
  11. 11.
    Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, (1980).Google Scholar
  12. 12.
    Gustedt, J., On the pathwidth of chordal graphs, Disc. Appl. Math. 45, (1993), pp. 233–248.Google Scholar
  13. 13.
    Harary, F., Graph Theory, Addison-Wesley Publ. Comp., Reading, Massachusetts, (1969).Google Scholar
  14. 14.
    Hemminger, R. L., Characterization of the line graph of a multigraph, Notices Amer. Math. Soc. 18, (1971), pp. 934.Google Scholar
  15. 15.
    Itai, A. and M. Rodeh, Finding a minimal circuit in a graph, SIAM J. Comput. 7, (1978), pp. 413–423.Google Scholar
  16. 16.
    Kloks, T., Treewidth, Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 1993.Google Scholar
  17. 17.
    Krausz, J., Démonstration nouvelle d'un théorème de Whitney sur les résaux, Mat. Fiz. Lapok 50, (1943), pp. 75–85.Google Scholar
  18. 18.
    Leeuwen, J. van, Graph Algorithms. In: J. van Leeuwen, ed., Handbook of Theoretical Computer Science, A: Algorithms and Complexity, Elsevier Science Publ., Amsterdam, 1990, pp. 527–631.Google Scholar
  19. 19.
    Lehot, P. G. H., An optimal algorithm to detect a line graph and output its root graph, J. of the ACM 21, (1974), pp. 569–575.Google Scholar
  20. 20.
    Lovász, L. and M. D. Plummer, Matching Theory, Ann. Disc. Math. 29, (1986).Google Scholar
  21. 21.
    Maffray, F., Kernels in perfect line-graphs, Journal of Combinatorial Theory, Series B 55, (1992), pp. 1–8.Google Scholar
  22. 22.
    Minty, G. J., On maximal independent sets of vertices in claw-free graphs, Journal on Combinatorial Theory, Series B 28, (1980), pp. 284–304.Google Scholar
  23. 23.
    Monien, B. and I. H. Sudborough, Min Cut is NP-complete for Edge Weighted Trees, Theoretical Computer Science 58, (1988), pp. 209–229.Google Scholar
  24. 24.
    Roussopoulos, N. D., A max{m, n} algorithm for determining the graph H from its line graph G, Information Processing Letters 2, (1973), pp. 108–112.Google Scholar
  25. 25.
    Sysło, M. M., A labeling algorithm to recognize a line digraph and output its root graph, Information Processing Letters 15, (1982), pp. 28–30.Google Scholar
  26. 26.
    Trotter, L. E., Line perfect graphs, Mathematical Programming 12, (1977), pp. 255–259.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • T. Kloks
    • 1
  • D. Kratsch
    • 2
  • H. Müller
    • 3
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyMB EindhovenThe Netherlands
  2. 2.Campus de BeaulieuIRISARennes CedexFrance
  3. 3.Fakultät für Mathematik und InformatikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations