Skip to main content

Domino treewidth

Extended abstract

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 903))

Included in the following conference series:

Abstract

We consider a special variant of tree-decompositions, called domino tree-decompositions, and the related notion of domino treewidth. In a domino tree-decomposition, each vertex of the graph belongs to at most two nodes of the tree. We prove that for every k, d, there exists a constant C k,d such that a graph with treewidth at most k and maximum degree at most d has domino treewidth at most C k,d The domino treewidth of a tree can be computed in O(n 2 log n) time. There exist polynomial time algorithms that — for fixed k — decide whether a given graph G has domino treewidth at most k. If k is not fixed, this problem is NP-complete. The domino treewidth problem is hard for the complexity classes W[t] for all t ξ N, and hence the problem for fixed k is unlikely to be solvable in O(n c), where c is a constant, not depending on k.

This author was partially supported by the ESPRIT Basic Research Actions of the EC under contract 7141 (project ALCOM II).

This author was supported by the ESPRIT Basic Research Working Group COMPUGRAPH II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

    Google Scholar 

  2. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In Proceedings of the 25th Annual Symposium on Theory of Computing, pages 226–234, New York, 1993. ACM Press.

    Google Scholar 

  3. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23, 1993.

    Google Scholar 

  4. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham. The parameterized complexity of sequence alignment and consensus (extended abstract). To appear in: proceedings Conference on Pattern Matching '94, 1993.

    Google Scholar 

  5. H. L. Bodlaender, M. R. Fellows, and M. Hallett. Beyond NP-completeness for problems of bounded width: Hardness for the W hierarchy. In Proceedings of the 26th Annual Symposium on Theory of Computing, pages 449–458, New York, 1994. ACM Press.

    Google Scholar 

  6. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness I: Basic results. Manuscript, 1991. To appear in SIAM J. Comput.

    Google Scholar 

  7. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II: On completeness for W[1]. Manuscript, 1991. To appear in Theoretical Computer Science, Ser. A.

    Google Scholar 

  8. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness III: Some structural aspects of the W hierarchy. Technical Report DCS-191-IR, Department of Computer Science, University of Victoria, Victoria, B.C., Canada, 1992.

    Google Scholar 

  9. J. Engelfriet, L. M. Heyker, and G. Leih. Context-free graph languages of bounded degree are generated by Apex graph grammars. Acta Informatica, 31:341–378, 1994.

    Google Scholar 

  10. E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Pitman, London, 1978.

    Google Scholar 

  11. T. Kloks, D. Kratsch, and H. Müller. Dominoes. This volume, pages 106–120, 1995.

    Google Scholar 

  12. B. Reed. Finding approximate separators and computing tree-width quickly. In Proceedings of the 24th Annual Symposium on Theory of Computing, pages 221–228, New York, 1992. ACM Press.

    Google Scholar 

  13. D. Seese. Tree-partite graphs and the complexity of algorithms. In L. Budach, editor, Proc. 1985 Int. Conf. on Fundamentals of Computation Theory, Lecture Notes in Computer Science 199, pages 412–421, Berlin, 1985. Springer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ernst W. Mayr Gunther Schmidt Gottfried Tinhofer

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodlaender, H.L., Engelfriet, J. (1995). Domino treewidth. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 1994. Lecture Notes in Computer Science, vol 903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59071-4_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-59071-4_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59071-2

  • Online ISBN: 978-3-540-49183-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics