On codings of traces

Extended abstract
  • Volker Diekert
  • Anca Muscholl
  • Klaus Reinhardt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 900)


The paper solves the main open problem of [BFG94]. We show that given two dependence alphabets (σ, D) and (σ′, D′), it is decidable whether there exists a strong coding h: M(σ, D)→M(σ′, D′) between the associated trace monoids. In fact, we show that the problem is NP-complete. (A coding is an injective homomorphism, it is strong if independent letters are mapped to independent traces.) We exhibit an example of trace monoids where a coding between them exists, but no strong coding. The decidability of codings remains open, in general. We have a lower and an upper bound, which show both to be strict. We further discuss encodings of free products of trace monoids and give almost optimal constructions.

In the final section, we state that the coding property is undecidable in a naturally arising class of homomorphisms.


Formal languages concurrency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AG91]
    C. Àlvarez and J. Gabarró. The parallel complexity of two problems on concurrency. Information Processing Letters, 38:61–70, 1991.Google Scholar
  2. [BF95]
    V. Bruyère and C. De Felice. Coding and Strong Coding in Trace Monoids. This volume.Google Scholar
  3. [BFG94]
    V. Bruyère, C. De Felice, and G. Guaiana. Coding with traces. In Proc. of STACS'94, LNCS 775, pp. 353–364. Springer, 1994.Google Scholar
  4. [CF69]
    P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrangements. Lecture Notes in Mathematics 85. Springer, 1969.Google Scholar
  5. [CL85]
    M. Clerbout and M. Latteux. Partial commutations and faithful rational transductions. Theoretical Computer Science, 35:241–254, 1985.Google Scholar
  6. [CLB81]
    D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible graphs. Discrete Appl. Math., 3:163–174, 1981.Google Scholar
  7. [CP85]
    R. Cori and D. Perrin. Automates et commutations partielles. R.A.I.R.O.-Informatique Théorique et Applications, 19:21–32, 1985.Google Scholar
  8. [CPS85]
    D. G. Corneil, Y. Pearl, and L. K. Stewart. A linear recognition algorithm for cographs. SIAM Journal of Computing, 14:926–934, 1985.Google Scholar
  9. [CR87]
    M. Chrobak and W. Rytter. Unique decipherability for partially commutative alphabets. Fundamenta Informaticae, X:323–336, 1987.Google Scholar
  10. [Die89]
    V. Diekert. Word problems over traces which are solvable in linear time. Theoretical Computer Science, 74:3–18, 1990.Google Scholar
  11. [Die90]
    V. Diekert. Combinatorics on Traces. LNCS 454. Springer, 1990.Google Scholar
  12. [DR95]
    V. Diekert and G. Rozenberg, eds. The Book of Traces. World Scientific, Singapore, 1995. To appear.Google Scholar
  13. [Dub86]
    C. Duboc. On some equations in free partially commutative monoids. Theoretical Computer Science, 46:159–174, 1986.Google Scholar
  14. [GJ78]
    M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco, 1978.Google Scholar
  15. [HC72]
    G. Hotz and V. Claus. Automatentheorie und Formale Sprachen, Band III. Bibliographisches Institut, Mannheim, 1972.Google Scholar
  16. [HY92]
    K. Hashiguchi and K. Yamada. String matching problems over free partially commutative monoids. Information and Computation, 101:131–149, 1992.Google Scholar
  17. [Kel73]
    R. Keller. Parallel program schemata and maximal parallelism I. Fundamental results. Journal of the ACM, 20:514–537, 1973.Google Scholar
  18. [Maz87]
    A. Mazurkiewicz. Trace theory. In Petri Nets, Applications and Relationship to other Models of Concurrency, LNCS 255. Springer, 1987.Google Scholar
  19. [Och88]
    E. Ochmański. On morphisms of trace monoids. In Proc. of STACS'88, LNCS 294, pp. 346–355. Springer, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Volker Diekert
    • 1
  • Anca Muscholl
    • 1
  • Klaus Reinhardt
    • 1
  1. 1.Institut für InformatikUniversität StuttgartStuttgart

Personalised recommendations