Interval routing schemes

  • Michele Flammini
  • Giorgio Gambosi
  • Sandro Salomone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 900)


In this paper, the problem of routing messages along shortest paths in a distributed network without using complete routing tables is considered. In particular, the complexity of designing minimum (in terms of number of intervals) Interval Routing Schemes is analyzed under different requirements. For all the considered cases NP-hardness proofs are given, while some approximability results are provided. Moreover, relations among the different considered cases are studied.


computational complexity theory of parallel and distributed computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg. Compact distributed data structures for adaptive routing. Proc. 21st ACM Symp. on Theory of Computing, pp. 479–489, 1989.Google Scholar
  2. 2.
    B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg. Improved routing strategies with succinct tables. Journal of Algorithms, 11, pp. 307–341, 1990.Google Scholar
  3. 3.
    N. Christofides. Worst case analysis of a new heuristic for the travelling salesman problem. Report No. 388, GSIA, Carnegie-Mellon University, Pittsburgh, PA, 1976.Google Scholar
  4. 4.
    G.N. Frederickson, R. Janardan. Designing networks with compact routing tables. Algorithmica, 3, pp. 171–190, 1988.Google Scholar
  5. 5.
    G.N. Frederickson, R. Janardan. Efficient message routing in planar networks. SIAM Journal on Computing, 18, pp. 843–857, 1989.Google Scholar
  6. 6.
    G.N. Frederickson, R. Janardan. Space efficient message routing in c-decomposable networks. SIAM Journal on Computing, 19, pp. 164–181, 1990.Google Scholar
  7. 7.
    M. Flammini, G. Gambosi, S. Salomone. Boolean Routing. Proc. 7th Int. Workshop on Distributed Algorithms (WDAG), Lecture Notes in Computer Science n. 725, Springer Verlag, pp. 219–233, 1993.Google Scholar
  8. 8.
    M.R. Garey, D.S. Johnson. Computers and Intractability. A guide to the theory of NP-completeness. W.H. Freeman, San Francisco, 1979.Google Scholar
  9. 9.
    D. Peleg, E. Upfal. A trade-off between space and efficiency for routing tables. Journal of the ACM, 36, 3, pp. 510–530, 1989.Google Scholar
  10. 10.
    M. Santoro, R. Khatib. Labelling and implicit routing in networks. The Computer Journal, 28, pp. 5–8, 1985.Google Scholar
  11. 11.
    J. van Leeuwen, R.B. Tan. Routing with compact routing tables. In “The book of L”, G. Rozemberg and A. Salomaa eds., Springer Verlag, pp. 259–273, 1986.Google Scholar
  12. 12.
    J. van Leeuwen, R.B. Tan. Interval routing. The Computer Journal, 30, pp. 298–307, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Michele Flammini
    • 1
    • 3
  • Giorgio Gambosi
    • 2
  • Sandro Salomone
    • 3
  1. 1.Dipartimento di Informatica e SistemisticaUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Dipartimento di MatematicaUniversity of Rome “Tor Vergata”RomeItaly
  3. 3.Dipartimento di Matematica Pura ed ApplicataUniversity of L'Aquilal'AquilaItaly

Personalised recommendations