Advertisement

On the sizes of permutation networks and consequences for efficient simulation of hypercube algorithms on bounded-degree networks

Extended abstract
  • J. Hromkovič
  • K. Loryś
  • P. Kanarek
  • R. Klasing
  • W. Unger
  • H. Wagener
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 900)

Abstract

The sizes of permutation networks for special sets of permutations are investigated. The study of the planar realization and the search for small but hard sets of permutations are also included. Several asymptotically optimal estimations for distinct subsets of the set of all permutations are established here.

The two main results are:
  1. (i)

    an asymptotically optimal permutation network of size 6·N·log log N for shifts of power 2.

     
  2. (ii)

    an asymptotically optimal planar permutation network of size Θ(N2·(loglog N/log N)2) for shifts of power 2.

     

A consequence of our results is a construction of a 4-degree network which can simulate each communication step of any hypercube algorithm using edges from at most a constant number of different dimensions in one step in O(loglog N) communication steps. A new sorting network as well as an essential improvement of gossiping in vertex-disjoint path mode in bounded-degree networks follow.

Classification

theory of parallel and distributed computation parallel algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AKS83]
    M. Ajtai, J. Komlós, E. Szemerédi, An O(n log n) sorting network. Proc. 15th ACM Symposium on Theory of Computing, pp. 1–9, 1983.Google Scholar
  2. [Be64]
    V. Beneš, “Permutation groups, complexes, and rearrangeable multistage Connecting networks”, Bell System Technical Journal, vol. 43, pp. 1619–1640, 1964.Google Scholar
  3. [Be65]
    V. Beneš, “Mathematical Theory of Connecting Networks and Telephone Traffic”, Academic Press, New York, NY, 1965.Google Scholar
  4. [CP93]
    R. Cypher, C.G. Plaxton: Deterministic Sorting in Nearly Logarithmic Time on the Hypercube and Related Computers. Journal of Computer and System Sciences, No. 47, 1993, pp. 501–548.Google Scholar
  5. [CS78]
    M. Cutler, Y. Shiloach: Permutation layout. Networks, vol. 8 (1978) 253–278.Google Scholar
  6. [GG81]
    O. Gabber, Z. Galil: Explicit Construction of Linear-Sized Superconcentrators. Journal of Computer and System Sciences, No. 22, 1981, pp. 407–420.Google Scholar
  7. [HKS93]
    J. Hromkovič, R. Klasing, E.A. Stöhr, “Gossiping in Vertex-Disjoint Paths Mode in Interconnection Networks”, Proc. of the 19th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG'93), Springer LNCS 790, pp. 288–300.Google Scholar
  8. [HKSW93]
    J. Hromkovič, R. Klasing, E.A. Stöhr, H. Wagener, “Gossiping in Vertex-Disjoint Paths Mode in d-Dimensional Grids and Planar Graphs”, Proc. of the First Annual European Symposium on Algorithms (ESA'93), Springer LNCS 726, pp. 200–211.Google Scholar
  9. [HKUW94]
    J. Hromkovič, R. Klasing, W. Unger, H. Wagener, “Optimal Algorithms for Broadcast and Gossip in the Edge-Disjoint Path Modes”, Proc. of the 4th Scandinavian Workshop on Algorithm Theory (SWAT'94), Springer LNCS 824, pp. 219–230.Google Scholar
  10. [K194]
    R. Klasing, “The Relationship Between Gossiping in Vertex-Disjoint Paths Mode and Bisection Width”, Proc. of the 19th International Symposium on Mathematical Foundations of Computer Science (MFCS'94), Springer LNCS 841, pp. 473–483.Google Scholar
  11. [KL92]
    M. Klawe, T. Leighton: A tight lower bound on the size of planar permutation networks. SIAM J. Disc. Math., Vol. 5, No. 4, pp. 558–563, November 1992Google Scholar
  12. [KLOW94]
    M. Kutyłowski, K. Loryś, B. Oesterdiekhoff, R. Wanka: Fast and feasible periodic sorting networks of constant depth; Proc. 35th Annual Symposium on Foundations of Computer Science (FOCS '94), to appear.Google Scholar
  13. [Le92]
    F.T. Leighton: Introduction to parallel algorithms and architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publisher (1992).Google Scholar
  14. [LT79]
    R.J. Lipton, R.E. Tarjan, “A separator theorem for planar graphs”, SIAM J. Appl. Math. 36(2), 1979, pp. 177–189.Google Scholar
  15. [Pi77]
    N. Pippenger: Superconcentrators. SIAM Journal of Computing, No. 6, 1977, pp. 298–304.Google Scholar
  16. [PV76]
    N. Pippenger, L. Valiant: Shifting graphs and their applications. Journal of the ACM, Vol. 23, No. 3, July 1976, pp. 423–432.Google Scholar
  17. [Ul84]
    Ullman, J.D., Computational Aspects of VLSI Computer Science Press, Rockville, MD, 1984, 495 p.Google Scholar
  18. [Wa68]
    A. Waksman, “A permutation network”, Journal of the ACM, vol. 15, no. 1, pp. 159–163, January 1968.Google Scholar
  19. [We94]
    R. Werchner, personal communication.Google Scholar
  20. [Wi92]
    D.B. Wilson: Embedding leveled hypercube algorithms into hypercubes. Proc. 4th ACM Symposium on Parallel Algorithms and Architectures (SPAA '92), pp. 264–270.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. Hromkovič
    • 1
  • K. Loryś
    • 2
  • P. Kanarek
    • 2
  • R. Klasing
    • 3
  • W. Unger
    • 3
  • H. Wagener
    • 3
  1. 1.Institut für Informatik und Praktische MathematikUniversität zu KielKielGermany
  2. 2.Institute of Computer ScienceUniversity of WroclawWroclawPoland
  3. 3.Fachbereich Mathematik/InformatikUniversität-GH PaderbornPaderbornGermany

Personalised recommendations