Solving air-traffic problems with “possible worlds”

  • Marcos Cavalcanti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 897)


We present here an executable modal logic based system: PW-XRete 1. This system is connected with the modal logic through the Kripke's possible worlds semantics. PW-XRete presents a procedure of labeling the worlds that provides an efficient implementation of the possible worlds and, as it showed, is well suited for nonmonotonic reasoning.

As an example of the use of PW-XRete in real life situations we present its solution to the aircraft sequencing problem.


Modal Logic Accessibility Relation Inference Mechanism Nonmonotonic Reasoning World Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Art86]
    Art. The automated reasoning tool reference manual. Technical report, Inference Corporation, 1986.Google Scholar
  2. [Bak74]
    K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.Google Scholar
  3. [Bel90]
    J. Bell, The logic of nonmonotonicity. Artificial Intelligence, 1889/90.Google Scholar
  4. [BOS86]
    L. Bianco, A. Odoni, and G. Szego. A Combinatorial Optimization Approach to Aircraft Sequencing Problem. Springer-Verlag, 1986.Google Scholar
  5. [Cav92]
    M. Cavalcanti. Possible worlds approach to aircraft sequencing problems. Proceedings du ler. Workshop en Systemes Autonomes en Robotique et CIM (Computer Integrated Manufacturing), 1992.Google Scholar
  6. [Cav93]
    M. Cavalcanti. Les Mondes Possibles dans les systèmes de production. PhD thesis, Université Paris XI — Orsay, 1993.Google Scholar
  7. [Che84]
    B.F. Chellas. Modal Logic, an Introduction. Cambridge University Press, 1984.Google Scholar
  8. [dC85]
    L. Farinas del Cerro. Molog: a System that extends Prolog with Modal Logic. UPS, 1985.Google Scholar
  9. [DK77]
    R. Davis and J. King. An overview of production systems. Machine Intelligence, 1977.Google Scholar
  10. [Fag91]
    F. Fages. A new fixpoint semantics for general logic programs compared with the wellfounded and the stable model semantics. New Generating Computing, 1991.Google Scholar
  11. [Fro91]
    C. Froidevaux. Introduction aux logiques modales. Technical report, LRI — Université de Paris XI, 1991.Google Scholar
  12. [Gab85]
    D.M. Gabbay. Theoretical foundations for nonmonotonic reasoning in expert systems. NATO ASI, 1985.Google Scholar
  13. [HC68]
    G.E. Hughes and M.J. Cresswell. An Introduction to Modal Logic. Methuen and Co., 1968.Google Scholar
  14. [Jac92]
    J.F. Jacquier. Les technologies au secours du trafic aerien. In L'usine nouvelle. numero 2371, 1992.Google Scholar
  15. [Jou92]
    J. Jourdan. Modelisation of the aircraft sequencing problem in constraint logic programming. Technical report, Thomson-CSF/LCR, 1992.Google Scholar
  16. [Kri59a]
    S.A. Kripke. A completeness theorem in modal logic. The Journal of Symbolic Logic, 1959.Google Scholar
  17. [Kri59b]
    S.A. Kripke. Distinguished constituents. The Journal of Symbolic Logic, 1959.Google Scholar
  18. [Kri63]
    S.A. Kripke. Semantical analysis of modal logic. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 1963.Google Scholar
  19. [Leh84]
    D. Lehmann. Knowledge, common knowledge and related puzzles. In Proceedings 3rd. Annual ACM Symposium on Principles of Distributed Computing, 1984.Google Scholar
  20. [RFC85]
    M.C. Rousset, B. Faller, and M.O. Cordier. Optimisation de l'operation de “patternmatching” dans les systemes experts. T.S.I. — Technique et Sciences Informatiques, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Marcos Cavalcanti

There are no affiliations available

Personalised recommendations