Proximity constraints and representable trees (extended abstract)

  • Prosenjit Bose
  • Giuseppe Di Battista
  • William Lenhart
  • Giuseppe Liotta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 894)


A family of proximity drawings of graphs called open and closed β-drawings, first defined in [15], and including the Gabriel, relative neighborhood and strip drawings, are investigated. Complete characterizations of which trees admit open β-drawings for \(0 \leqslant \beta \leqslant \tfrac{1}{{2sin^2 (\pi /5)}}\)and \(\tfrac{1}{{cos(2\pi /5)}} < \beta < \infty \)or closed β-drawings for \(0 \leqslant \beta < \tfrac{1}{{2sin^2 (\pi /5)}}\)and \(\tfrac{1}{{cos(2\pi /5)}}0 \leqslant \beta \leqslant \infty \)are given, as well as partial characterizations for other values of β. For β<∞ in the intervals in which complete characterizations are given, it can be determined in linear time whether a tree admits an open or closed β-drawing, and, if so, such a drawing can be computed in linear time in the real RAM model. Finally, a complete characterization of all graphs which admit closed strip drawings is given.


  1. 1.
    J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier Science, New York, New York, 1976.Google Scholar
  2. 2.
    P. Bose, W. Lenhart, and G. Liotta. Characterizing Proximity Trees. To appear in Algorithmica: Special Issue on Graph Drawing, also available as Technical Report no. TR-SOCS 93.9, School of Computer Science, McGill University, 1993.Google Scholar
  3. 3.
    R. J. Cimikowski. Properties of Some Euclidean Proximity Graphs. Pattern Recognition Letters, 13, 1992, pp. 417–423.Google Scholar
  4. 4.
    G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis. Algorithms for Automatic Graph Drawing: An Annotated Bibliography. To appear in Computational Geometry: Theory and Applications.Google Scholar
  5. 5.
    G. Di Battista, W. Lenhart, G. Liotta. Proximity Drawability: a Survey. Proc. GD94, 1994.Google Scholar
  6. 6.
    G. Di Battista and L. Vismara. Angles of Planar Triangular Graphs. Proc. STOC '93, 1993, pp. 431–437.Google Scholar
  7. 7.
    P. Eades, T. Lin, and X. Lin. Two Tree Drawing Conventions. Int. J. of Comp. Geom. and Appl., 3, 1993, pp. 133–153.Google Scholar
  8. 8.
    P. Eades Drawing Free Trees. Bull. of the Inst. of Comb. and its Appl., 1992, pp. 10–36.Google Scholar
  9. 9.
    P. Eades and S. Whitesides. The Realization Problem for Euclidean Minimum Spanning Trees is NP-hard. Proc. ACM Symp. on Comp. Geom., 1994.Google Scholar
  10. 10.
    I. Fary On Straight Lines Representation of Planar Graphs. Acta Sci. Math. Szeged, 11, 1948, pp. 229–233.Google Scholar
  11. 11.
    H. de Fraysseix, J. Pach, and R. Pollack. Small Sets Supporting Fary Embbeddings of Planar Graphs. Proc. STOC '88, 1988, pp. 426–433.Google Scholar
  12. 12.
    H. de Fraysseix, J. Pach, and R. Pollack. How to Draw a Planar Graph on a Grid. Combinatorica, 10, 1990, pp. 41–51.Google Scholar
  13. 13.
    J. W. Jaromczyk and G. T. Toussaint. Relative Neighborhood Graphs and Their Relatives. Proceedings of the IEEE, 80, 1992, pp. 1502–1517.Google Scholar
  14. 14.
    G. Kant. Drawing Planar Graphs Using the lmc-ordering. Proc. FOCS '92, 1992, pp. 101–110.Google Scholar
  15. 15.
    D. G. Kirkpatrick and J. D. Radke. A Framework for Computational Morphology. Computational Geometry, ed. G. T. Toussaint, Elsevier, Amsterdam, 1985, pp. 217–248.Google Scholar
  16. 16.
    A. Lubiw, and N. Sleumer, All Maximal Outerplanar Graphs are Relative Neighborhood Graphs. Proc. CCCG '93, 1993, pp. 198–203.Google Scholar
  17. 17.
    S. Malitz and A. Papakostas. On the Angular Resolution of Planar Graphs. Proc. STOC '92, 1992, pp. 527–538.Google Scholar
  18. 18.
    D. W. Matula and R. R. Sokal. Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane. Geographical Analysis, 12, 1980, pp. 205–222.Google Scholar
  19. 19.
    C. Monma and S. Suri. Transitions in Geometric Minimum Spanning Trees. Proc. ACM Symp. on Comp. Geom., 1991, pp. 239–249.Google Scholar
  20. 20.
    F. P. Preparata and M. I. Shamos, Computational Geometry — an Introduction. Springer-Verlag, New York, 1985.Google Scholar
  21. 21.
    J. D. Radke. On the shape of a set of points. Computational Morphology, ed. G. T. Toussaint, Elsevier, Amsterdam, 1988, pp. 105–136.Google Scholar
  22. 22.
    G. T. Toussaint. The Relative Neighborhood Graph of a Finite Planar Set. Pattern Recognition, 12, 1980, pp. 261–268.Google Scholar
  23. 23.
    G. T. Toussaint. A Graph-Theoretical Primal Sketch. Computational Morphology, ed. G. T. Toussaint, Elsevier, Amsterdam, 1988, pp. 229–260.Google Scholar
  24. 24.
    W. T. Tutte, Convex Representations of Graphs. Proc. London Math. Soc., 10, 1960, pp. 304–320.Google Scholar
  25. 25.
    R. B. Urquhart. Some Properties of the Planar Euclidean Relative Neighbourhood Graph. Pattern Recognition Letters, 1, 1983, pp. 317–322.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Prosenjit Bose
    • 1
  • Giuseppe Di Battista
    • 2
  • William Lenhart
    • 3
  • Giuseppe Liotta
    • 2
  1. 1.School of Computer ScienceMcGill University, 3480 UniversityMontréalCanada
  2. 2.Dipartimento di Informatica e SistemisticaUniversità di Roma ‘La Sapienza’RomaItalia
  3. 3.Department of Computer ScienceWilliams CollegeWilliamstown

Personalised recommendations