Redrawing a graph within a geometric tolerance

  • Manuel Abellanas
  • Ferran Hurtado
  • Pedro A. Ramos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 894)


In this paper we investigate some applications of the concept of tolerance to graph drawing. Given a geometric structure, the tolerance is a measure of how much the set of points can be arbitrarily changed while preserving the structure. Then, if we have a layout of a graph and we want to redraw the graph while preserving the mental map (captured by some proximity graph of the set of nodes), the tolerance of this proximity graph can be a useful tool. We present an optimal O(n log n) algorithm for computing the tolerance of the Delaunay triangulation of a set of points and propose some variations with applications to interactive environments.


Convex Hull Stability Region Delaunay Triangulation Interior Edge Voronoi Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Abellanas, J. García, G. Hernández, F. Hurtado, O. Serra, J. Urrutia: Updating polygonizations, Computer Graphics Forum, vol.12, n.3 (1993), pp.143–152.Google Scholar
  2. 2.
    M. Abellanas, F. Hurtado, P. Ramos: Tolerance of geometric structures, Proc. 6th Canadian Conference on Computational Geometry (1994).Google Scholar
  3. 3.
    P.J. Agarwal, M. Sharir, S. Toledo: Applications of parametric searching in geometric optimization, Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms (1992), pp.72–82.Google Scholar
  4. 4.
    F. Aurenhammer: Improved algorithms for discs and balls using power diagrams, Journal of Algorithms 9 (1988), pp.151–161.Google Scholar
  5. 5.
    K.Q. Brown: Geometric transforms for fast geometric algorithms, Ph.D. thesis, Rep. CMU-CS-80-101, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh (1980).Google Scholar
  6. 6.
    P. Eades, R. Tamassia: Algorithms for drawing graphs: An annotated bibliography, Technical report, Dept. of Computer Science, Brown Univ., Providence, Rhode Island (1989).Google Scholar
  7. 7.
    P. Eades, W. Lai, K. Misue, K. Sugiyama: Preserving the Mental Map of a Diagram Research Report IIAS-RR-91-16E, International Institute for Advanced Study of Social Information Science, Fujitsu Laboratories Ltd., 17–25, Shinkamata 1-chome, Ohta-ku, Tokyo 144, Japan, August 1991.Google Scholar
  8. 8.
    K.A. Lyons: Cluster Busting in Anchored Graph Drawing Ph.D. thesis, Queen's University (1994).Google Scholar
  9. 9.
    K.A. Lyons, H. Meijer, D. Rappaport: Properties of the Voronoi Diagram Cluster Buster Proc. 1993 CAS Conference (CASCON'93) Vol. II, A. Gawman, W.M. Getleman, E. Kidd, P. Larson, J. Slonim, Eds, IBM Canada Ltd. Laboratory Center for Advanced Studies and NRC Canada, Toronto (Canada), October 24–28 1993, pp. 1148–1163.Google Scholar
  10. 10.
    P. Ramos: Tolerancia de Estructuras Geométricas y Combinatorias Ph.D. Thesis (in Spanish), in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Manuel Abellanas
    • 1
  • Ferran Hurtado
    • 2
  • Pedro A. Ramos
    • 1
  1. 1.Universidad Politécnica de MadridMadrid
  2. 2.Universitat Politécnica de CatalunyaCatalunya

Personalised recommendations