Crossing numbers of graphs, lower bound techniques and algorithms: A survey

  • Farhad Shahrokhi
  • László A. Székely
  • Imrich Vrt'o
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 894)


We give a survey of recent techniques for deriving lower bounds and algorithms for constructing upper bounds for several variations of the crossing number problem. Our aim is to emphasize the more general results or those results which have an algorithmic flavor, including the recent results of the authors.


  1. 1.
    Ajtai, M., Chvátal, V., Newborn, M., M. Szemerédy, E., “Crossing-free subgraphs”, Annals of Discrete Mathematics 12 (1982), 9–12.Google Scholar
  2. 2.
    Alon, N., Spencer, J.H., Erdös, P., “The Probabilistic Method”, Wiley and Sons, New York, 1992.Google Scholar
  3. 3.
    Batini, C., Nardelli, E., Talamo, M., Tamassia, R., A graphtheoretic approach to aesthetic layout of information systems diagrams, in: Proc. 10th Intl. Workshop on Graph-Theoretic Concepts in Computer Science, Trauner Verlag, Berlin, 1984, 9–18.Google Scholar
  4. 4.
    Beineke, L. W., Ringeisen, R. D., On the crossing number product of cycles and graphs of order four, J. Graph Theory 4(1980), 145–155.Google Scholar
  5. 5.
    Bienstock, D., Dean, N., “New results on rectilinear crossing Numbers and Plane Embeddings”, J. Graph Theory, 16 (1992), 389–398.Google Scholar
  6. 6.
    Bienstock, D., Dean, N., “Bounds on the rectilinear crossing Numbers”, J. Graph Theory 17 (1993), 333–348.Google Scholar
  7. 7.
    Bhatt, S. N., Leighton, F. T., “A framework for Solving VLSI Graph Layout Problems”, Journal of Computer and System Sciences 28 (1984), 300–343.Google Scholar
  8. 8.
    Chung, F. R. K., Yau, S.T., “A near optimal algorithm for edge separators”, in: Proc. 26th Annual ACM Symposium on the Theory on Computing, ACM, New York, 1994, 1–8.Google Scholar
  9. 9.
    Erdös, P., Guy, R. P., Crossing number problems, American Mathematical Monthly 80(1973), 52–58.Google Scholar
  10. 10.
    Eades, P., Wormald, N. C., Edge crossings in drawings of bipartite graphs, Algorithmica(1994), 11, 379–403.Google Scholar
  11. 11.
    Fáry, I., “On Straight Line Representations of Graphs”, Acta. Univ. Szeged Sect. Sci. Math., 11, 1948, 229–233.Google Scholar
  12. 12.
    Garey, M. R., Johnson, D. S., Crossing number is NP-complete, SIAM J. Alg. Discrete Methods 4(1983), 312–316.Google Scholar
  13. 13.
    Gazit, H., Miller, G.L., Planar separators and the Euclidean norm, in: Proc. Algorithms, Intl. Symp. SIGAL'90, Lecture Notes in Computer Science 450, Springer Verlag, Berlin, 1990, 338–347.Google Scholar
  14. 14.
    Gross, J. L., On infinite family of octahedral crossing numbers, J. Graph Theory 2 (1978), 171–178.Google Scholar
  15. 15.
    Guy, R.K., A combinatorial problem, Nabla (Bull. Malayan Math. Soc.) 7 (1960), 68–72.Google Scholar
  16. 16.
    Guy, R. K., Jenkins, T., Schaer, J., The toroidal crossing number of the complete graph, J. Combinatorial Theory 4 (1968), 376–390.Google Scholar
  17. 17.
    Guy, R. K., Jenkins, T., The toroidal crossing number of K m, n, J. Combinatorial Theory 6 (1969), 235–250.Google Scholar
  18. 18.
    Kainen, P. C., A lower bound for crossing number of graphs with applications to K n, Kp,q and Q(d), J. Combinatorial Theory (B) 12 (1972), 287–298.Google Scholar
  19. 19.
    Kainen, P. C., White, A. T., On stable crossing numbers, J. Graph Theory 2 (1978) 181–187.Google Scholar
  20. 20.
    Kleitman, D. J., The crossing number of K 5,n, J. Combinatorial Theory 9 (1970), 315–323.Google Scholar
  21. 21.
    Leighton, F. T., Complexity Issues in VLSI, MIT Press, Cambridge, 1983. Malitz, S.M., “Genus g Graphs have Pagenumber O(√g)”, Journal of Algorithms, 17 (1), 84–109, 1994.Google Scholar
  22. 22.
    Madej, T., Bounds for the crossing number of the n-cube, J. Graph Theory 15 (1991), 81–97.Google Scholar
  23. 23.
    Pica, G., Pisanski., T., Ventre, A.G.S., “Cartesian product of graphs and their crossing numbers, Annals of Discrete Mathematics 30(1986), 339–346.Google Scholar
  24. 24.
    Pach, J., Shahrokhi, F., Szegedy, M., Applications of crossing numbers, in: Proc. 10th Annual ACM Symposium on Computational Geometry, ACM, New York, 1994.Google Scholar
  25. 25.
    Shahrokhi, F., Sýkora, O., Székely, L. A., Vrt'o, I., The crossing number of a graph on a compact 2-manifold, Advances in Mathematics, to appear.Google Scholar
  26. 26.
    Shahrokhi, F., Székely, L. A., “Effective lower bounds for crossing number, bisection width and balanced vertex separators in terms of symmetry”, in: Proc. 2nd IPCO Conf., Pittsburgh, 1992, 102–113, also to appear in Combinatorics, Probability and Computing.Google Scholar
  27. 27.
    Shahrokhi, F., Sýkora, O., Székely, L. A., Vrt'o, I., “Improved bounds for the crossing numbers on surfaces of genus g”, in: Proc. 19-th Intl. Workshop on Graph-Theoretic Concepts in Computer Science WG'93, Lecture Notes in Computer Science, Springer Verlag, Berlin, 1994, 388–395, to appear in Algorithmica.Google Scholar
  28. 28.
    Shahrokhi, F., Sýkora, O., Székely, L. A., Vrt'o, I., “On Book Embeddings and Crossing Numbers”, to appear in Proc. 20-th Intl. Workshop on Graph-Theoretic Concepts in Computer Science WG'94, Lecture Notes in Computer Science, Springer Verlag, Berlin, 1995.Google Scholar
  29. 29.
    Sýkora, O., Vrto, I., Edge separators for graphs of bounded genus with applications, Theoretical Computer Science 112 (1993), 419–429.Google Scholar
  30. 30.
    Sýkora, O., Vrt'o, I., On VLSI layout of the star graph and related networks, Integration, the VLSI Journal 17 (1994), 83–93.Google Scholar
  31. 31.
    White, A. T., Beineke, L. W., Topological graph theory, in: Selected Topics in Graph Theory, eds. L. W. Beineke and R. J. Wilson, Academic Press, 1978, 15–50.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Farhad Shahrokhi
    • 1
  • László A. Székely
    • 2
  • Imrich Vrt'o
    • 3
  1. 1.Department of Computer ScienceUniversity of North TexasDentonUSA
  2. 2.Department of Computer ScienceEötvös UniversityBudapest, Muzeum krt. 6-8Hungary
  3. 3.Institute for InformaticsSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations