Regular orientations, arboricity, and augmentation

  • Hubert de Fraysseix
  • Patrice Ossona de Mendez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 894)


  1. 1.
    H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary embeddings of planar graphs. In Twentieth Annual ACM Symposium on Theory of Computing, pages 426–433, 1988.Google Scholar
  2. 2.
    K.P. Eswaran and R.E. Tarjan. Augmentation problems. SIAM J. Comput., 5:653–665, 1976.Google Scholar
  3. 3.
    G. Kant. Algorithms for Drawing Planar Graphs. Ph.D. thesis, Utrecht University, Utrecht, 1993.Google Scholar
  4. 4.
    C. St J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36:445–450, 1961.Google Scholar
  5. 5.
    P. O. de Mendez. Orientations bipolaires. Ph.D. thesis, Ecole des Hautes Etudes en Sciences Sociales, Paris, 1994.Google Scholar
  6. 6.
    V. Petrović. Decomposition of some planar graphs into trees. In J. Bolyai Mathematical Society, editor, Proc. International Conference on Combinatorics, page 48, 1993.Google Scholar
  7. 7.
    V. Petrović, G. Ringel, and C. Thomassen. Decomposition of maximal graphs into trees. preprint, 1993.Google Scholar
  8. 8.
    G. Ringle. Two trees in maximal planar bipartite graphs. Journal of Graph Theory, 17(6):755–758, 1993.Google Scholar
  9. 9.
    W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.Google Scholar
  10. 10.
    W. Schnyder. Embedding planar graphs in the grid. In First ACM-SIAM Symposium on Discrete Algorithms, pages 138–147, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Hubert de Fraysseix
    • 1
  • Patrice Ossona de Mendez
    • 1
  1. 1.CNRS UMR 0017EHESSParisFrance

Personalised recommendations