On drawing a graph convexly in the plane (extended abstract)

  • Hristo N. Djidjev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 894)


Let G be a planar graph and H be a subgraph of G. Given any convex drawing of H, we investigate the problem of how to extend the drawing of H to a convex drawing of G. We obtain a necessary and sufficient condition for the existence and a linear algorithm for the construction of such an extension. Our results and their corollaries generalize previous theoretical and algorithmic results of Tutte, Thomassen, Chiba, Yamanouchi, and Nishizeki.


Planar Graph Convex Polygon Outer Face Linear Algorithm Planar Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis, Algorithms for drawing graphs: an annotated bibliography, Technical Report, Brown University, 1988; updated 1993.Google Scholar
  2. 2.
    Guiseppe Di Battista, Roberto Tamassia, and Luca Vismara, On-line convex planarity testing, Proc. WG'94, in Lecture Notes in Computer Science, Springer-Verlag, to appear.Google Scholar
  3. 3.
    K. Booth, G. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithm, J. Comp. Syst. Sci. 13, 1976, pp. 335–379.Google Scholar
  4. 4.
    N. Chiba, T. Nishizeki, S. Abe, T. Ozawa, A linear algorithm for embedding planar graphs using PQ-trees, J. Comput. System Sci. 30, 1985, 54–76.Google Scholar
  5. 5.
    N. Chiba, T. Yamanouchi, T. Nishizeki, Linear algorithms for convex drawings of planar graphs, in Progress in Graph Theory, J. A. Bondy and U.S.R. Murty (eds.), Academic Press, 1984, pp. 153–173.Google Scholar
  6. 6.
    M. Chrobak and G. Kant, Convex grid drawings of 3-connected planar graphs, Technical Report RUU-CS-93-45, Utrecht University, 1993.Google Scholar
  7. 7.
    S. Even and R.E. Tarjan, Computing an st-numbering, Theor. Comput. Sci. 2, 1976, 339–344.Google Scholar
  8. 8.
    J. Hopcroft and R.E. Tarjan, Dividing a graph into triconnected components, SIAM J. Comput. 2, 1973, pp. 135–158.Google Scholar
  9. 9.
    J. Hopcroft and R.E. Tarjan, Efficient planarity testing, J.ACM, 21:4, 1974, pp. 549–568.Google Scholar
  10. 10.
    G. Kant, Drawing planar graphs using the lmc-ordering, Proc. IEEE Symp. on Foundations of Computer Science, 1992, pp. 101–110.Google Scholar
  11. 11.
    A. Lempel, S. Even, I. Cederbaum, An algorithm for planarity testing of a graph, Theory of Graphs: International Symposium, Gordon and Breach, New York, 1967, pp. 215–232.Google Scholar
  12. 12.
    T. Nishizeki, N. Chiba, Planar Graphs: Theory and Algorithms, North Holland, 1988.Google Scholar
  13. 13.
    W. Schnyder and W. Trotter, Convex drawings of planar graphs, Abstracts of the AMS, vol. 13, 1992.Google Scholar
  14. 14.
    S. K. Stein, Convex maps, Proc. Amer. Math. Soc., vol. 2, pp. 464–466, 1951.Google Scholar
  15. 15.
    C. Thomassen, Planarity and duality of finite and infinite planar graphs, J. Combinatorial Theory, Series B 29, 1980, pp. 244–271.Google Scholar
  16. 16.
    W. T. Tutte, Convex representations of graphs, Proc. London Math Soc., vol. 10, 1960, pp. 304–320.Google Scholar
  17. 17.
    W.T. Tutte, How to draw a graph, Proc. London Math Soc., vol. 3, no. 13, 1963, pp. 743–768.Google Scholar
  18. 18.
    K. Wagner, Bemerkungen zum Vierfarbenproblem, Jber. Deutsch. Math.-Verein, vol. 46, 1936, pp. 26–32.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Hristo N. Djidjev
    • 1
  1. 1.Department of Computer ScienceRice UniversityHostonUSA

Personalised recommendations