Metal complex in polymer membrane as a model for photosynthetic oxygen evolving center

  • R. Ramaraj
  • M. Kaneko
Part of the Advances in Polymer Science book series (POLYMER, volume 123)


Photosynthesis is attracting attention as an important model of artificial photochemical conversion system in relevant to solar energy conversion for new energy resources. In the photosynthesis, dioxygen evolution is the most important process which provides electrons to the whole photochemical system. Several proposals have been put forward to elucidate the mechanism in the dioxygen formation from two water molecules and four molecules of one-electron oxidation catalyst. The protein part of the oxygen evolving center plays an important role for the catalysis. However, these mechanisms remain the most obscure part of plant photosynthesis. In order to construct artificial photosynthesis for the future energy source, it is important to utilize heterogeneous system such as polymer aggregates. The present authors have established new and active water oxidation catalysts as models for the photosynthesis especially by using heterogeneous polymer systems.

This review article mainly summarizes the work done on artificial water oxidation processes using polymer membranes, and the mechanism of the dioxygen evolution will be discussed. In the model water oxidation systems studied, the multielectron transfer catalytic metal complexes such as Mn and Ru are oxidized by chemical, electrochemical and photochemical methods to produce reactive higher oxidation states which oxidize two water molecules to liberate dioxygen both in homogeneous and heterogeneous polymer membrane systems. Structural reorganization of the catalytic molecules in the polymer membrane during dioxygen evolution is also described. Visible light splitting of water has been achieved by a system composed of a semiconductor photoanode modified with a polymer membrane incorporating water oxidation catalysts.


Polymer Membrane Water Oxidation Ruthenium Complex Nation Membrane Nation Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Renger G, Photosynthetic Water Oxidation, Academic Press, London (1978)Google Scholar
  2. 2.
    Inoue T, Crofts CR, Govindjee, Murata N (eds) The Oxygen Evolving System of Photosynthesis, Academic Press, London (1983)Google Scholar
  3. 3.
    Biggins J (ed) Progress in Photosynthesis Research, Vol. 3, Martinus Nijhoff, Dordrecht (1987)Google Scholar
  4. 4.
    Graetzel M (ed) Energy Resources Through Photochemistry and Catalysis, Academic Press, London (1983)Google Scholar
  5. 5.
    Kaneko M, Woehrle D (1988) Adv Polym Sci 84: 141CrossRefGoogle Scholar
  6. 6.
    Tsuchida E (ed) Macromolecular Complexes: Dynamic Interactions and Electronic Processes, VCH Publishers, New York (1991)Google Scholar
  7. 7.
    Govindjee (ed) Bioenergetics of Photosynthesis, Academic Press, London (1975)Google Scholar
  8. 8.
    Govindjee (ed) Photosynthesis-Energy Conversion by Plants and Bacteria, Vol. 1, Academic Press, London (1982)Google Scholar
  9. 9.
    Barber J (ed) Primary Processes of Photosynthesis, Elsevier/North Holland Biomedical Press, Amsterdam (1977)Google Scholar
  10. 10.
    Weighardt K (1989) Angw Chem Int Ed Engl 28: 1153CrossRefGoogle Scholar
  11. 11.
    Pelizzetti E, Schiavello M (eds) Photochemical Conversion and Storage of Solar Energy, Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  12. 12.
    Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Nature 318: 618CrossRefGoogle Scholar
  13. 13.
    Kalyanasundaram K, Graetzel M (1979) Angew Chem Int Ed Engl 18: 701CrossRefGoogle Scholar
  14. 14.
    Lehn JM, Sauvage JP, Ziessel R (1979) Nouv J Chim 3: 423Google Scholar
  15. 15.
    Rillema DP, Dressick WJ, Meyer TJ (1980) J Chem Soc Chem Commun 247Google Scholar
  16. 16.
    Shafirovich V Ya, Khannanov NK, Strelets VV (1980) Nouv J Chim 4: 81Google Scholar
  17. 17.
    Kiwi J, Graetzel M (1978) Angrew Chem Int Ed Engl 17: 860CrossRefGoogle Scholar
  18. 18.
    Harriman A, Mills A (1981) J Chem Soc Faraday Trans 1. 77: 2111CrossRefGoogle Scholar
  19. 19.
    Kaneko M, Awaya N, Yamada A (1982) Chem Lett 619Google Scholar
  20. 20.
    Graetzel M (1980) Ber Bunsenges Phs Chem 84: 9181Google Scholar
  21. 21.
    Harriman A, Porter G, Walters P (1981) J Chem Soc Faraday Trans 2. 77: 2373CrossRefGoogle Scholar
  22. 22.
    Creutz C, Suitn N (1975) Proc Natl Acad Sci USA. 72: 2858CrossRefGoogle Scholar
  23. 23.
    Kaneko M, Takabayashi N, Yamada A (1982) Chem Lett 1647Google Scholar
  24. 24.
    Luneva NP, Shafirovich VYa, Shilov AE (1989) J Mol Catal 52: 49CrossRefGoogle Scholar
  25. 25.
    Elizarova GL, Matvienko LG, Parmon VN (1987) J Mol Catal 43: 171CrossRefGoogle Scholar
  26. 26.
    Calvin M (1874) Science 184: 375CrossRefGoogle Scholar
  27. 27.
    Porter G (1978) Proc Royal Soc London. A362: 28Google Scholar
  28. 28.
    Cooper SR, Calvin M (1974) Science 185: 376CrossRefGoogle Scholar
  29. 29.
    Ramaraj R, Kira A, Kaneko M (1986) Angrew Chem Int Ed Engl 25: 825CrossRefGoogle Scholar
  30. 30.
    Ramaraj R, Kira A. Kaneko M (1987) Chem Lett 261Google Scholar
  31. 31.
    Lawrence LG, Sawyer DT (1978) Coord Chem Rev 27: 173CrossRefGoogle Scholar
  32. 32.
    Sauer K (1980) Acc Chem Res 13: 249CrossRefGoogle Scholar
  33. 33.
    Govindjee, Kambara T, Coleman W (1985) Photochem Photobiol 42: 187CrossRefGoogle Scholar
  34. 34.
    Ashmawy FM, McAuliffe CA, Parish RV, Tames J (1985) J Chem Soc Dalton Trans 1391Google Scholar
  35. 35.
    McAuliffe CA, Parish RV, Abu-El-Wafa SM, Issa RM (1986) Inorg Chim Acta 115: 91CrossRefGoogle Scholar
  36. 36.
    Ashmawy FM, McAuliffe CA, Parish RV, Tames J (1984) J Chem Soc Chem Commun 14Google Scholar
  37. 37.
    Matsushita T, Spencer L, Sawyer DT (1988) Inorg Chem 27: 1167CrossRefGoogle Scholar
  38. 38.
    Gobi KV, Ramaraj R, Kaneko M (1983) J Mol Catal 81: L7Google Scholar
  39. 39.
    Gersten SW, Samuels GJ, Meyer TJ (1982) J Am Chem Soc 104: 4029CrossRefGoogle Scholar
  40. 40.
    Meyer TJ (1984) J ELectrochem Soc 131: 221CGoogle Scholar
  41. 41.
    Gilbert JA, Eggeleston DS, Murphy Jr WR, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107: 3855CrossRefGoogle Scholar
  42. 42.
    Collin JP, Sauvage JP (1986) Inorg Chem 25: 135CrossRefGoogle Scholar
  43. 43.
    Ramaraj R, Kira A, Kaneko M (1986) J Chem Soc Faraday Trans 1. 82: 3515CrossRefGoogle Scholar
  44. 44.
    Honda K, Frank AJ (1984) J Chem Soc Chem Commun 1635Google Scholar
  45. 45.
    Lay PA, Sasse WHF (1985) Inorg Chem 24: 4707CrossRefGoogle Scholar
  46. 46.
    Ramaraj R, Kira A, Kaneko M (1987) J Chem Faraday Trans 1. 83: 1539CrossRefGoogle Scholar
  47. 47.
    Ramaraj R, Kira A, Kaneko M (1986) Angew Chem Intl Ed Engl 25: 1009CrossRefGoogle Scholar
  48. 48.
    Rotzinger FP, Munavelli S, Comte P, Hurst JK, Graetzel M, Pern FJ, Frank AJ (1987) J Am Chem Soc 109: 6619CrossRefGoogle Scholar
  49. 49.
    Nazeerudin MK, Rotzinger FP, Comte P, Graetzel M (1988) J Chem Soc Chem Commun 872Google Scholar
  50. 50.
    Comte P, Nazeerudin MK, Rotzinger FP, Frank AJ, Graetzel M (1989) J Mol Catal 52: 63CrossRefGoogle Scholar
  51. 51.
    Kaneko M, Ramaraj R, Kira A (1988) Bull Chem Soc Jpn 61: 417CrossRefGoogle Scholar
  52. 52.
    Goswami S, Chakravarthy AR, Chakravorty A (1982) J Chem Soc Chem Commun 1288Google Scholar
  53. 53.
    Nijs H, Crutz MI, Fripiat J, Van Damme H (1981) J Chem Soc Chem Commun 1026Google Scholar
  54. 54.
    Takuchi KJ, Samuels GJ, Gerstein SW, Gilbert JA, Meyer TJ (1983) Inorg Chem 22: 1409CrossRefGoogle Scholar
  55. 55.
    Mills A, Russell T (1991) J Chem Soc Faraday Trans 87: 313CrossRefGoogle Scholar
  56. 56.
    Hurst JK, Zhou J, Lei Y (1992) Inorg Chem 31: 1010CrossRefGoogle Scholar
  57. 57.
    Eisenberg A, Yeager HL (1982) (eds) Perfluorinated Ionomer Membrane, Vol. 180, American Chemical Society, Washington DCGoogle Scholar
  58. 58.
    Yeager HL, Steck A (1981) J Electrochem Soc 128: 1880CrossRefGoogle Scholar
  59. 59.
    Nijs H, Crutz MI, Fripiat JJ, Van Damme H (1982) Nouv J Chim 6: 551Google Scholar
  60. 60.
    Abdo S, Canesson P, Crutz MI, Fripiat JJ, Van Damme H (1981) J Phys Chem 85: 797CrossRefGoogle Scholar
  61. 61.
    Dobson JC, Meyer TJ (1988) Inorg Chem 27: 3283CrossRefGoogle Scholar
  62. 62.
    Ramaraj R, Kira A, Kaneko M (1993) J. Electronal Chem 348: 367CrossRefGoogle Scholar
  63. 63.
    Ramaraj R, Kira A, Kaneko M (submitted to Polymers for Advanced Technologies)Google Scholar
  64. 64.
    Vining WJ, Meyer TJ (1986) Inorg Chem 25: 2023CrossRefGoogle Scholar
  65. 65.
    Fletcher JM, Greenfield BF, Hardy CJ, Scargill D, Woohead JL (1961) J. Chem Soc A. 2000Google Scholar
  66. 66.
    Early JE, Fealey T (1973) Inorg Chem 12: 323CrossRefGoogle Scholar
  67. 67.
    Earley JE, Fealey T (1971) Chem Commun 331Google Scholar
  68. 68.
    Early JE, Razari H (1973) Inorg Nucl Chem Lett 9: 331CrossRefGoogle Scholar
  69. 69.
    Early JE (1973) Inorg Nucl Chem Lett 9: 487CrossRefGoogle Scholar
  70. 70.
    Yao G.-J, Kira A, Kaneko M (1988) J Chem Soc Faraday Trans.. 84: 4451CrossRefGoogle Scholar
  71. 71.
    Ramaraj R, Kaneko M (1993) J Chem Soc Chem Commun 579Google Scholar
  72. 72.
    Ramaraj R, Kaneko M (1993) J Mol Catal 81: 319CrossRefGoogle Scholar
  73. 73.
    Schiavello M (ed) Photoelectrochemistry, Photocatalysis and Photoreactors, Reidel, Dordrecht (1985)Google Scholar
  74. 74.
    Fujishima A, Honda K (1972) Nature 238: 37CrossRefGoogle Scholar
  75. 75.
    Kayanasudnaram K, Graetzel M (1979) Angew Chem Int Ed Engl 18: 701CrossRefGoogle Scholar
  76. 76.
    Frank AJ, Honda K (1982) J Phys Chem 86: 1933CrossRefGoogle Scholar
  77. 77.
    Kaneko M, Okada K, Teratani S, Taya K (1987) Electrochim Acta 32: 1405CrossRefGoogle Scholar
  78. 78.
    Kaneko M, Yao G.-J, Kira A (1989) J Chem Soc Chem Commun 1338Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • R. Ramaraj
    • 1
  • M. Kaneko
    • 2
  1. 1.School of ChemistryMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of ChemistryIbaraki UniversityMito, IbarakiJapan

Personalised recommendations