Skip to main content

Molecular recognition of organic acids and anions — Receptor models for carboxylates, amino acids, and nucleotides

  • Chapter
  • First Online:
Supramolecular Chemistry II — Host Design and Molecular Recognition

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 175))

Abstract

The roots of synthetic molecular recognition and supramolecular chemistry itself lie in the investigation of organic ligands for metal cations, and the amount of research done in this field is overwhelming. For a long time, however, far less interest has been focussed on the complexation of anions even if the primal strategies were comparable, and only in recent years have the advances made been increasingly dynamic. In particular receptor molecules for biorelevant species such as amino acids and nucleotides are primary research targets, not least for their potential applications in medicine. In this article the developments which have been made here so far will be summarized and the attentive reader might notice that most of the primary literature cited is less than five years old. The emphasis has not been laid upon structural characteristics or synthetic strategies but rather on the effects the new host molecules give rise to and the functions they may have.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Vögtle F, Sieger H, Müller WM (1981) Top Curr Chem 98: 107

    Google Scholar 

  2. Kimura E (1985) Top Curr Chem 128: 113

    Google Scholar 

  3. Kimura E (1985) In: Boschke FL (ed) Biomimetic and Biorganic Chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Schmidtchen FP (1986) Top Curr Chem 132: 101

    Google Scholar 

  5. Schmidtchen FP (1988) Nachr Chem Tech Lab 36: 8

    Google Scholar 

  6. Dietrich B (1993) Pure Appl Chem 65: 1457

    Google Scholar 

  7. Kimura E, Sakonaka A, Yatsunami T, Kodama M (1981) J Am Chem Soc 103: 3041

    Google Scholar 

  8. Dietrich B, Hosseini MW, Lehn JM, Sessions RB (1981) J Am Chem Soc 103: 1282

    Google Scholar 

  9. Hosseini MW, Lehn JM (1982) J Am Chem Soc 104: 3525

    Google Scholar 

  10. The interaction of aliphatic α,ω-dicarboxylates and open-chain benzophenone derivatives containing carboxyl or ammonium groups have been described: Breslow R, Rajagopalan R, Schwarz J (1981) J Am Chem Soc 103: 2905

    Google Scholar 

  11. Lehn JM, Méric R, Vigneron JP, Bkouche-Waksman I, Pascard C: J Chem Soc Chem Commun 1991: 62. C.f.: Jazwinski J, Blacker AJ, Lehn JM, Cesario M, Guilhem J, Pascard C (1987) Tetrahedron Lett 28: 6057

    Google Scholar 

  12. Dhaenens M, Lehn JM, Vigneron JP: J Chem Soc Perkin Trans 11 1993: 1379

    Google Scholar 

  13. Schmidtchen FP (1981) Chem Ber 114: 597; summary: Schmidtchen FP, Gleich A, Schummer A (1989) Pure Appl Chem 61: 1535

    Google Scholar 

  14. Schmidtchen FP (1986) J Am Chem Soc 108: 8249

    Google Scholar 

  15. Dietrich B, Fyles DL, Fyles TM, Lehn JM (1979) Helv Chim Acta 62: 2763

    Google Scholar 

  16. Dietrich B, Fyles TM, Lehn JM, Pease LG, Fyles DL: J Chem Soc Chem Commun 1978: 2763

    Google Scholar 

  17. Martell AE, Motekaitis RJ (1988) J Am Chem Soc 110: 8059

    Google Scholar 

  18. Tabushi I, Shimizu N, Sugimoto T, Shiozuka M, Yamamura K (1977) J Am Chem Soc 99: 7100

    Google Scholar 

  19. Žinić M, Frkanec L, Škarić V, Trafton J, Gokel GW: J Chem Soc Chem Commun 1990: 1726; Žinić M, Frkanec L, Škarić V, Trafton J, Gokel GW (1992) Supramol Chem 1: 47. C.f.: Tsukube H: J Chem Soc Perkin Trans. I 1982: 2359

    Google Scholar 

  20. Beer PD, Drew MGB, Hazlewood C, Hesek D, Hodacova J, Stokes SE: J Chem Soc Chem Commun 1993: 229

    Google Scholar 

  21. Echavarren A, Galán A, de Mendoza J, Salmerón A, Lehn JM (1988) Helv Chim Acta 71: 685. C.f.: de Mendoza J (1993) An Quim 89: 57

    Google Scholar 

  22. Gleich A, Schmidtchen FP (1990) Chem Ber 123: 907; Schmidtchen FP (1990) Tetrahedron Lett 31: 2269; Kurzmeier H, Schmidtchen FP (1990) J Org Chem 55: 3749

    Google Scholar 

  23. Schmidtchen FP (1980) Chem Ber 113: 2175

    Google Scholar 

  24. Müller G, Riede J, Schmidtchen FP (1988) Angew Chem Int Ed Engl 27: 1516

    Google Scholar 

  25. Echavarren A. Galán A, Lehn JM, de Mendoza J (1989) J Am Chem Soc 111: 4994. C.f.: Rebek J Jr (1990) Chemtracts Org Chem 3: 240

    Google Scholar 

  26. Galán A, Lu GY, Sánchez J, Seel C, de Mendoza J: unpublished results

    Google Scholar 

  27. A review involving enantioselective recognition: Webb TH, Wilcox CS: Chem Soc Rev 1993: 383

    Google Scholar 

  28. Schießl P, Schmidtchen FP (1993) Tetrahedron Lett 34: 2449

    Google Scholar 

  29. The X-ray crystal structure of the nitrate salt of a parent monoguanidinium bis(silylether) derivative has been published: Gleich A, Schmidtchen FP, Mikulcik P, Müller G: J Chem Soc Chem Commun 1990: 55

    Google Scholar 

  30. Chicharro JL, Prados P, de Mendoza J: J Chem Soc Chem Commun 1994: 1193

    Google Scholar 

  31. Review: Rebek J Jr (1990) Angew Chem Int Ed Engl 29: 245

    Google Scholar 

  32. Rebek J Jr, Nemeth D, Ballester P, Lin FT (1987) J Am Chem Soc 109: 3474

    Google Scholar 

  33. Mussons ML, Raposo C, Anaya J, Grande M, Morán JR, Caballero MC: J Chem Soc Perkin Trans 1 1992: 3125

    Google Scholar 

  34. Crego M, Raposo C, Caballero MC, García E, Saez JG, Morán JR (1992) Tetrahedron Lett 33: 7437. C.f. Crego M, Raposo C, Partearroyo A, Mussons M, Caballero MC, Morán JR (1993) An Quim 89: 153. C.f. ref. 46g). A related receptor of ureas and formamides is described in: Crego M, Marugán JJ, Raposo C, Sanz MJ, Alcázar, V, Caballero MC, Morán JR (1991) Tetrahedron Lett 32: 4185

    Google Scholar 

  35. Reviews: a) Hamilton AD (1991) In: Dugas H (ed) Bioorganic Chemistry Frontiers, vol 2. Springer, Berlin Heidelberg New York, p 115

    Google Scholar 

  36. Hamilton AD, Fan E, Van Arman S, Vicent C, Garcia Tellado F, Geib SJ (1993) Supramol Chem 1: 247

    Google Scholar 

  37. Garcia Tellado F, Goswami S, Chang SK, Geib SJ, Hamilton AD (1990) J Am Chem Soc 112: 7393; therein is also described the complex of a macromonocycle with diethylmalonate. Carboxylic acid complexation by a synthetic vancomycin analogue: Pant N, Hamilton AD (1988) J Am Chem Soc 110: 2002

    Google Scholar 

  38. Vicent C, Hirst SC, Garcia Tellado F, Hamilton AD (1991) J Am Chem Soc 113: 5466

    Google Scholar 

  39. Related mixed urea-amidopyridyl or tetraamidic hosts have been reported by the same group: Vicent C, Fan E, Hamilton AD (1992) Tetrahedron Lett 33: 4269; Albert JS, Hamilton AD (1993) Tetrahedron Lett 34: 7363. For a bis(urea) host compound, see: Hamann BC, Branda NR, Rebek J Jr (1993) Tetrahedron Lett 34: 6837

    Google Scholar 

  40. Fan E, Van Arman SA, Kincaid S, Hamilton AD (1993) J Am Chem Soc 115: 369

    Google Scholar 

  41. Some recent papers on this topic: a) Lindsey JS (1991) New J Chem 15: 153

    Google Scholar 

  42. Simard M, Su D, Wuest JD (1991) J Am Chem Soc 113: 4696

    Google Scholar 

  43. Whitesides GM, Mathias JP, Seto CT (1992) Science 254: 1312

    Google Scholar 

  44. Duerr BF, Zimmermann SC (1992) J Org Chem 57: 2215

    Google Scholar 

  45. Bonar-Law RP, Sanders JKM (1993) Tetrahedron Lett 34: 1677

    Google Scholar 

  46. Seto CT, Whitesides GM (1993) J Am Chem Soc 115: 1330 and references cited therein

    Google Scholar 

  47. Potts KT, Gheysen Raiford KA, Keshavarz-K M (1993) J Am Chem Soc 115: 2793

    Google Scholar 

  48. Chang YL, West MA, Fowler FW, Lauher JW (1993) J Am Chem Soc 115: 5991

    Google Scholar 

  49. Piguet C, Bünzli JCG, Bernardinelli G, Hopfgartner G, Williams AF (1993) J Am Chem Soc 115: 8197

    Google Scholar 

  50. Baxter P, Lehn JM, DeCian A, Fischer J (1993) Angew Chem Int Ed Engl 32: 69

    Google Scholar 

  51. Krämer R, Lehn JM, DeCian A, Fischer J (1993) Angew Chem Int Ed Engl 32: 703

    Google Scholar 

  52. Ziessel R, Youinou MT (1993) Angew Chem Int Ed Engl 32: 877

    Google Scholar 

  53. Armspach D, Ashton PR, Moore CP, Spencer N, Stoddart JF, Wear TJ, Williams DJ (1993) Angew Chem Int Ed Engl 32: 854

    Google Scholar 

  54. Rissanen K, Huuskonen J, Windscheif PM, Vögtle (1993) Supramol Chem 2: 247

    Google Scholar 

  55. Wyler R, de Mendoza J, Rebek J Jr (1993) Angew Chem Int Ed Engl 32: 1699

    Google Scholar 

  56. Andreu C, Beerli R, Branda N, Conn M, de Mendoza J, Galán A, Huc I, Tymoshenko M, Valdez C, Winter E, Wyler R, Rebek J Jr (1993) Pure Appl Chem 65: 2313

    Google Scholar 

  57. Mathias JP, Simanek EE, Seto CT, Whitesides GM (1993) Angew Chem Int Ed Engl 32: 1766

    Google Scholar 

  58. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich (1993) Nature 366: 324

    Google Scholar 

  59. Garcia Tellado F, Geib SJ, Goswami S, Hamilton AD (1991) J Am Chem Soc 113: 9265

    Google Scholar 

  60. Geib SJ, Vicent C, Fan E, Hamilton AD (1993) Angew Chem Int Ed Engl 32: 60

    Google Scholar 

  61. Yang J, Fan E, Geib SJ, Hamilton AD (1993) J Am Chem Soc 115: 5314

    Google Scholar 

  62. Alcázar Montero V, Tomlinson L, Houk KN, Diederich F (1991) Tetrahedron Lett 32: 5309; Alcázar V, Morán JR, Diederich F (1992) Israel J Chem 32: 69

    Google Scholar 

  63. Owens L, Thilgen C, Diederich F, Knobler CB (1993) Helv Chim Acta 76: 2757

    Google Scholar 

  64. Alcázar V, Diederich F (1992) Angew Chem Int Ed Engl 31: 1503

    Google Scholar 

  65. Garcia Tellado F, Albert J, Hamilton AD: J Chem Soc Chem Commun 1991: 1761

    Google Scholar 

  66. Examples: a) Zielinsky WS, Orgel LE (1987) Nature 327: 346

    Google Scholar 

  67. von Kiedrowski G, Wlotzka B, Helbing J, Matzen M, Jordan S (1991) Angew Chem Int Ed Engl 30: 423 and references herein

    Google Scholar 

  68. Nowick JS, Feng Q, Tjivikua T, Ballester P, Rebek J Jr (1991) J Am Chem Soc 113: 8831; a summary is given in: Rebek J Jr (1993) Supramol Chem 1: 261

    Google Scholar 

  69. Krämer R, Lehn JM, De Cian A, Fischer J (1993) Angew Chem Int Ed Engl 32: 764

    Google Scholar 

  70. Terfort A, von Kiedrowski G (1992) Angew Chem Int Engl 31: 654

    Google Scholar 

  71. Pederson noted that 18-crown-6 binds glycine hydrochloride but not glycine itself: Pederson CJ (1967) J Am Chem Soc 89: 7017

    Google Scholar 

  72. Lehn reports similar observations with phenylalanine: Behr JP, Lehn JM, Vierling P (1982) Helv Chim Acta 65: 1853

    Google Scholar 

  73. Molecular clefts: Famulok M, Jeong KS, Deslongchamps G, Rebek J Jr (1991) Angew Chem Int Ed Engl 30: 858

    Google Scholar 

  74. Macrooligocyclic hosts: Liu R, Sanderson PEJ, Still WC (1990) J Org Chem 55: 5184; Yoon SS, Still WC (1993) J Am Chem Soc 115: 823; Liu R, Still WC (1993) Tetrahedron Lett 34: 2573; Yoon SS, Georgiadis TM, Still WC (1993) Tetrahedron Lett 34: 6697; Borchardt A, Still WC (1994) J Am Chem Soc 116: 373

    Google Scholar 

  75. Short overview: Schneider HJ (1993) Angew Chem Int Ed Engl 32: 848

    Google Scholar 

  76. Zinc porphyrins: Kuroda Y, Kato Y, Higashioji T, Ogoshi H (1993) Angew Chem Int Ed Engl 32: 723

    Google Scholar 

  77. Calix [6] arenes: Chang SK, Hwang HS, Son H, Youk J, Kang YS: J Chem Soc Chem Commun 1991: 217

    Google Scholar 

  78. Macrocyclic peptides: Miyake H, Kojima Y, Yamashita T, Ohsuka A (1993) Macrocyclic Chem 194: 1925

    Google Scholar 

  79. Chiral molecular niches related to host 21: Crego M, Partearroyo A, Raposo C, Mūssons ML López JL, Alcázar V, Morán JR (1994) Tetrahedron Lett 35: 1435

    Google Scholar 

  80. Peacok SS, Walba DM, Gaeta FCA, Helgeson RC, Cram DJ (1980) J Am Chem Soc 104: 2043

    Google Scholar 

  81. Goodnow TT, Reddington MV, Stoddart JF, Kaifer AE (1991) J Am Chem Soc 113: 4335

    Google Scholar 

  82. Kobayashi K, Tominaga M, Asakawa Y, Aoyama Y (1993) Tetrahedron Lett 34: 5121. For chiral recognition of N-protected amino acids by a metalloporphyrin, see: Konishi K, Yahara K, Toshishige H, Aida T, Inoue S (1994) J Am Chem Soc 116: 1337

    Google Scholar 

  83. Tabushi I, Kuroda Y, Mizutani T (1986) J Am Chem Soc 108: 4514. It should be noticed that unsubstituted α-and β-cyclodextrin as well weakly bind tryptophan: see therein and Lipkowitz KB, Raghothama S, Yang YA (1992) J Am Chem Soc 114: 1554

    Google Scholar 

  84. Impellizzeri G, Maccarrone G, Rizzarelli E, Vecchio G, Corradini R, Marchelli R (1991) Angew Chem Int Ed Engl 30: 1348. The capacity of the aminoacetate subunit of α-amino acids to chelate Lewis-acidic centers has also been used in U-tube experiments with lipophilic Cu(II) complexes (a) and phenylboronic acid (b), respectively, as transport mediators

    Google Scholar 

  85. Scrimin P, Tonellato U, Zanta N (1988) Tetrahedron Lett 29: 4967

    Google Scholar 

  86. Mohler LK, Czarnik AW (1993) J Am Chem Soc 115: 7037

    Google Scholar 

  87. Aoyama Y, Asakawa M, Yamagishi A, Toi H, Ogoshi H (1990) J Am Chem Soc 112: 3145

    Google Scholar 

  88. Sunamoto J, Iwamoto K, Mohri Y, Kominato T (1982) J Am Chem Soc 104: 5502

    Google Scholar 

  89. Rebek J Jr, Nemeth D (1985) J Am Chem Soc 107: 6738; Rebek J Jr, Askew B, Nemeth D, Parris K (1987) J Am Chem Soc 109: 2432

    Google Scholar 

  90. Amino acid binding by monolayers of long-chain derivatives of Kemp's triacid: Ikeura Y, Kurihara K, Kunitake T (1991) J Am Chem Soc 113: 7342

    Google Scholar 

  91. Askew BC (1990) Tetrahedron Lett 30: 4245

    Google Scholar 

  92. Murakami Y, Ohno T, Hayashida O, Hisaeda Y: J Chem Soc Chem Commun 1991: 950.

    Google Scholar 

  93. C.f. Murakami Y, Hayashida O, Ito T, Hisaeda Y: Chem Lett 1992: 497.

    Google Scholar 

  94. Murakami Y, Hayashida O Nagai Y (1994) J Am Chem Soc 116: 2611

    Google Scholar 

  95. A similar open-chain host binding hydrophobic anionic and neutral dyes in water: Murakami Y, Hayashida O, Nagai Y, (1993) Tetrahedron Lett 34: 7935

    Google Scholar 

  96. Schmidtchen FP (1986) J Org Chem 51: 5161

    Google Scholar 

  97. Galán A, Andreu D, Echavarren AM, Prados P, de Mendoza J (1992) J Am Chem Soc 114: 1511

    Google Scholar 

  98. More recent HPLC measurements with eluents containing chiral salts showed that ca. 10% of the minor enantiomers were actually extracted: Marcelli R, de Mendoza J, et al. (unpublished results)

    Google Scholar 

  99. de Mendoza J, Gago F (1994) In: Wipff G (ed) Computational Aproaches in Supramolecular Chemistry. Kluwer, Dordrecht, p 79

    Google Scholar 

  100. Hamilton AD, Van Engen D (1987) J Am Chem Soc 109: 5035

    Google Scholar 

  101. Kelly TR, Maguire MP (1987) J Am Chem Soc 109: 6549

    Google Scholar 

  102. Feibush B, Saha M, Onan K, Karger B, Giese R (1987) J Am Chem Soc 109: 7531

    Google Scholar 

  103. Muehldorf AV, Van Engen D, Warner JC, Hamilton AD (1988) J Am Chem Soc 110: 6561

    Google Scholar 

  104. Lindsey JS, Kearney PC, Duff RJ, Tjivuaka T, Rebek J Jr (1988) J Am Chem Soc 110: 6575

    Google Scholar 

  105. Grotjohn BF, Czarnik AW (1989) Tetrahedron Lett 30: 2325

    Google Scholar 

  106. Goswami S, Hamilton AD, Van Engen D (1989) J Am Chem Soc 111: 3425

    Google Scholar 

  107. Zimmerman SC, Wu W (1989) J Am Chem Soc 111: 8054

    Google Scholar 

  108. Adrian JC, Wilcox CS (1989) J Am Chem Soc 111: 8055

    Google Scholar 

  109. Jeong KS, Tjivikua T, Muehldorf A, Deslongchamps G, Famulok M, Rebek J Jr (1991) J Am Chem Soc 113: 201

    Google Scholar 

  110. Medina JC, Li C, Bott SG, Atwood JL, Gokel GW (1991) J Am Chem Soc 113: 366

    Google Scholar 

  111. Seel C, Vögtle F (1991) Angew Chem Int Ed Engl 30: 442

    Google Scholar 

  112. Park TK, Schroeder J, Rebek J Jr (1991) J Am Chem Soc 113: 5125

    Google Scholar 

  113. Ogoshi H, Hatekeyama H, Kotani J, Kawashima A, Kuroda Y (1991) J Am Chem Soc 113: 8181

    Google Scholar 

  114. Murray TJ, Zimmerman SC (1992) J Am Chem Soc 114: 4010

    Google Scholar 

  115. Conn MM, Deslongchamps G, de Mendoza J, Rebek J Jr (1993) J Am Chem Soc 115: 3548

    Google Scholar 

  116. Huston ME, Akkaya EU, Czarnik AW (1989) J Am Chem Soc 111: 8735

    Google Scholar 

  117. Rudkevich DM, Stauthamer WPRV, Verboom W, Engbersen JFJ, Harkema S, Reinhoudt DN (1992) J Am Chem Soc 114: 9671

    Google Scholar 

  118. Sessler JL, Cyr M, Furuta H, Král V, Mody T, Morishima T, Shonoya M, Weghorn S (1993) Pure Appl Chem 65: 393

    Google Scholar 

  119. Valiyaveettil S, Engbersen JFJ, Verboom W, Reinhoudt DN (1993) Angew Chem Int Ed Engl 32: 900

    Google Scholar 

  120. Rudkevich DM, Brzozka Z, Palys M, Visser HC, Verboom W, Reinhoudt DN (1994) Angew Chem Int Ed Engl 33: 467

    Google Scholar 

  121. Nakai C, Glinsman W (1977) Biochemistry 16: 5636

    Google Scholar 

  122. Dietrich B, Hosseini MW, Lehn JM, Sessions RB (1981) Biochemistry 103: 1282

    Google Scholar 

  123. Kimura E, Kodama M, Yatsunami T (1982) J Am Chem Soc 104: 3182

    Google Scholar 

  124. Marecek JF, Fischer PA, Burrows CJ (188) Tetrahedron Lett 29: 6231

    Google Scholar 

  125. Behr JP: J Chem Soc Chem Commun 1989: 101 and references cited therein

    Google Scholar 

  126. Zuber G, Sirlin C, Behr JP (1993) J Am Chem Soc 115: 4939

    Google Scholar 

  127. Van Arman SA, Czarnik AW (1990) J Am Chem Soc 112: 5376

    Google Scholar 

  128. Wilson HR, Williams RJP (1987) J Chem Soc Faraday Trans 1 83: 1885

    Google Scholar 

  129. Hosseini MW, Lehn JM, Jones KC, Plute KE, Mertes KB, Mertes MP (1989) J Am Chem Soc 111: 6330 and references cited therein

    Google Scholar 

  130. Hosseini MW, Blacker AJ, Lehn JM: J Chem Soc Chem Commun 1988: 596; Hosseini MW, Blacker AJ, Lehn JM (1990) J Am Chem Soc 112: 3896. C.f. Mertes MP, Mertes KB (1990) Acc Chem Res 23: 413

    Google Scholar 

  131. Fluorescence monitoring of enzymatic ATP hydrolysis by an anthrylpolyammonium ion is described in: Van Arman SA, Czarnik AW (1993) Supramol Chem 1: 99

    Google Scholar 

  132. For recently published binding of nucleotides by aminocyclodextrins and a water soluble rhodioporphyrin, respectively, see: a) Eliseev AV, Schneider HJ (1993) Angew Chem Int Ed Engl 32: 1331

    Google Scholar 

  133. Kuroda Y, Hatakeyama H, Inakoshi N, Ogoshi H (1993) Tetrahedron Lett 34: 8285

    Google Scholar 

  134. Claude S, Lehn JM, Schmidt F, Vigneron JP: J Chem Soc Chem Commun 1991: 1182

    Google Scholar 

  135. Schneider HJ, Blatter T, Palm B, Pfingstag U, Rüdiger V, Theis I (1992) J Am Chem Soc 114: 7704

    Google Scholar 

  136. Harden MR (ed) (1985) Approaches to antiviral agents. VCH Publishers, Deerfield Beach, Florida

    Google Scholar 

  137. Martin JC (ed) (1989) Nucleotide analogues as antiviral agents. Am Chem Soc, Washington, D.C.

    Google Scholar 

  138. Mitsuya H, Broder S (1987) Nature 325: 773

    Google Scholar 

  139. Tabushi I, Imuta JI, Seko N, Kobuke Y (1978) J Am Chem Soc 100: 6287; Tabushi I, Kobuke Y, Imuta JI (1980) J Am Chem Soc 102: 1744: Tabushi I, Kobuke Y, Imuta JI (1981) J Am Chem Soc 103: 6152

    Google Scholar 

  140. Li T, Diederich F (1992) J Org Chem 57: 3449

    Google Scholar 

  141. Li T, Krasne SJ, Persson B, Kaback HR, Diederich F (1993) J Org Chem 58: 380

    Google Scholar 

  142. Furuta H, Magda D, Sessler JL (1991) J Am Chem Soc 113: 978

    Google Scholar 

  143. Furuta H, Cyr MJ, Sessler JL (1991) J Am Chem Soc 113: 6677. C.f. Iverson BL, Thomas RE, Kral V, Sessler JL (1994) J Am Chem Soc 116: 2663

    Google Scholar 

  144. Král V, Sessler Jl, Furuta H (1992) J Am Chem Soc 114: 8704

    Google Scholar 

  145. A review summarizing this work and a detailed bibliography is given in: Sessler JL, Furuta H, Král V (1993) Supramol Chem 1: 209

    Google Scholar 

  146. Furuta H, Morishima T, Král V, Sessler JL (1992) Supramol Chem 3: 5

    Google Scholar 

  147. Manabe K, Okamura K, Date T, Koga K (1992) J Am Chem Soc 114: 6940

    Google Scholar 

  148. Flatt LS, Lynch V, Anslyn EV (1992) Tetrahedron Lett 33: 2785

    Google Scholar 

  149. Geib SJ, Hirst SC, Vicent C, Hamilton AD: J Chem Soc Chem Commun 1991: 1283

    Google Scholar 

  150. Dixon RP, Geib SJ, Hamilton AD (1992) J Am Chem Soc 114: 365

    Google Scholar 

  151. Tecilla P, Chang SK, Hamilton AD (1990) J Am Chem Soc 112: 9586

    Google Scholar 

  152. Jubian V, Dixon RP, Hamilton AD (1992) J Am Chem Soc 114: 1120

    Google Scholar 

  153. Cotton FA, Hazen EE, Legg MJ (1979) Proc Natl Acad Sci USA 64: 420

    Google Scholar 

  154. Ariga K, Anslyn EV (1992) J Org Chem 57: 417. For the enolate complexation of a related polyaza-cleft, see: Kelly-Rowley AM, Cabell LA, Anslyn EV (1991) J Am Chem Soc 113: 9687

    Google Scholar 

  155. Sepersu EH, Shortle D, Mildvan AS (1987) Biochemistry 26: 1289

    Google Scholar 

  156. Aqvist J, Warshel A (1990) J Am Chem Soc 112: 2860

    Google Scholar 

  157. Smith J, Ariga K, Anslyn EV (1993) J Am Chem Soc 113: 362; Kneeland DM, Ariga K, Lynch VM, Huang CY, Anslyn EV (1993) J Am Chem Soc 115: 10042

    Google Scholar 

  158. This work is summarized in: Anslyn EV, Smith J, Kneeland DM, Ariga K, Chu FY (1993) Supramol Chem 1: 201

    Google Scholar 

  159. Breslow R, Doherty JB, Guillot G, Lipsey Hersh C (1978) J Am Chem Soc 100: 3227; Breslow R, Bovy P, Lipsey Hersh C (1980) J Am Chem Soc 102: 2115; Breslow R, Labelle M (1986) J Am Chem Soc 108: 2655; Anslyn EV, Breslow R (1989) J Am Chem Soc 111: 4473; Anslyn EV, Breslow R (1989) J Am Chem Soc 111: 5972. Summary: Breslow R (1993) Supramol Chem 1: 111

    Google Scholar 

  160. Morrow JR, Buttrey LA, Shelton VM, Berback KA (1992) J Am Chem Soc 114: 1903

    Google Scholar 

  161. Göbel MW, Bats JW, Dürner G (1992) Angew Chem Int Ed Engl 31: 207

    Google Scholar 

  162. Vance DH, Czarnik AW, (1993) J Am Chem Soc 115: 12165

    Google Scholar 

  163. Schneider HJ, Rammo J, Hettich R (1993) Angew Chem Int Ed Engl 32: 1716

    Google Scholar 

  164. ATP binding by a guanidinium-functionalized monolayer: Sasaki DY, Kurihara K, Kunitake T (1991) J Am Chem Soc 113: 9685

    Google Scholar 

  165. Galán A (1989) Thesis, Universidad Autónoma de Madrid, Madrid

    Google Scholar 

  166. Schmidtchen FP (1989) Tetrahedron Lett 30: 4493

    Google Scholar 

  167. Schießl P, Schmidtchen FP (1994) J Org Chem 59: 509

    Google Scholar 

  168. Galán A, Pueyo E, Salmerón A, de Mendoza J (1991) Tetrahedron Lett 32: 1827

    Google Scholar 

  169. Deslongchamps G, Galán A, de Mendoza J, Rebek J Jr (1992) Angew Chem Int Ed Engl 31: 61

    Google Scholar 

  170. Andreu C, Galán A, Kobiro K, de Mendoza J, Park TK, Rebek J Jr, Salmerón A, Ussman N (1994) J Am Chem Soc 166: 5501

    Google Scholar 

  171. Galán A, de Mendoza J, Toiron C, Bruix M, Deslongchamps G, Rebek J Jr (1991) J Am Chem Soc 113: 9424

    Google Scholar 

  172. Salmerón A, de Mendoza J, Toiron C, Bruix M, Conn MM and Rebek J, Jr.: unpublished results

    Google Scholar 

  173. Magrans JO, de Mendoza J, Prados P, Sánchez J, Seel C (unpublished results)

    Google Scholar 

  174. Pedersen CJ (1967) J Am Chem Soc 89: 2495

    Google Scholar 

  175. Park CH, Simmons HE (1968) J Am Chem Soc 90: 2431

    Google Scholar 

  176. “The primary motivations that once induced chemists to undertake natural product syntheses no longer exist. Instead of target structures themselves, molecular function and activity now occupy center stage.” Quoted from: Seebach D (1990) Angew Chem Int Ed Engl 29: 1320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Weber

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Seel, C., Galán, A., de Mendoza, J. (1995). Molecular recognition of organic acids and anions — Receptor models for carboxylates, amino acids, and nucleotides. In: Weber, E. (eds) Supramolecular Chemistry II — Host Design and Molecular Recognition. Topics in Current Chemistry, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58800-0_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-58800-0_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58800-9

  • Online ISBN: 978-3-540-49106-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics