Advertisement

Matching upper and lower bounds for simulations of several tapes on one multidimensional tape

  • Martin Dietzfelbinger
  • Martin Hühne
Complexity Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 880)

Abstract

We prove a \(\Theta (t(n)\sqrt[d]{{t(n)}}/\log i(n))\) bound for the simulation of t(n) steps of a Turing machine using several one-dimensional work tapes on a Turing machine using one d-dimensional work tape, d ≥ 2. The lower bound holds for the problem of recognizing languages on machines with a separate one-way input tape.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Die90]
    M. Dietzfelbinger. The speed of copying on one-tape off-line Turing machines. Information Processing Letters, 33: 83–89, 1989/90.Google Scholar
  2. [Hen66]
    F.C. Hennie. On-line Turing machine computations. IEEE Transactions on Electronic Computers, 15: 35–44, 1966.Google Scholar
  3. [HS66]
    F.C. Hennie and R.E. Stearns. Two-tape simulation of multitape Turing machines. Journal of the ACM, 13: 533–546, 1966.Google Scholar
  4. [HU79]
    J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Mass., 1979.Google Scholar
  5. [LL92]
    M.C. Loui and D.R. Luginbuhl. The complexity of on-line simulations between multidimensional Turing machines and random access machines. Mathematical Systems Theory, 25: 293–308, 1992.Google Scholar
  6. [Lou81]
    M.C. Loui. A space bound for one-tape multidimensional Turing machines. Theoretical Computer Science, 15: 311–320, 1981.Google Scholar
  7. [Lou82]
    M.C. Loui. Simulations among multidimensional Turing machines. Theoretical Computer Science, 21: 145–161, 1982.Google Scholar
  8. [Lou83]
    M.C. Loui. Optimal dynamic embedding of trees into arrays. SIAM Journal on Computing, 12: 463–472, 1983.Google Scholar
  9. [Lou84]
    M.C. Loui. Minimizing access pointers into trees and arrays. Journal of Computer and System Sciences, 28: 359–378, 1984.Google Scholar
  10. [LV88]
    M. Li and P.M.B. Vitányi. Tape versus queue and stacks: The lower bounds. Information and Computation, 78: 56–85, July 1988.Google Scholar
  11. [LV93]
    M. Li and P.M.B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer, New York, 1993.Google Scholar
  12. [Maa85]
    W. Maass. Combinatorial lower bound arguments for deterministic and nondeterministic Turing machines. Transactions of the AMS, 292: 675–693, 1985.Google Scholar
  13. [MSST93]
    W. Maass, G. Schnitger, E. Szemerédi, and G. Túran. Two tapes versus one for off-line Turing machines. Computational Complexity, 3: 392–401, 1993.Google Scholar
  14. [Pau84]
    W.J. Paul. On heads versus tapes. Theoretical Computer Science, 28: 1–12, 1984.Google Scholar
  15. [PF79]
    N. Pippenger and M.J. Fischer. Relations among complexity measures. Journal of the ACM, 26: 361–381, 1979.Google Scholar
  16. [PSS81]
    W.J. Paul, J.I. Seiferas, and J. Simon. An information-theoretic approach to time bounds for online computation. J. Computer and System Sciences, 23: 343–350, 1981.Google Scholar
  17. [Rei82]
    K.R. Reischuk. A fast implementation of a multidimensional storage into a tree storage. Theoretical Computer Science, 19: 253–266, 1982.Google Scholar
  18. [SS89]
    W. Schnitzlein and H.-J. Stoss. Linear-time simulation of multihead Turing machines. Information and Computation, 81: 353–363, 1989.Google Scholar
  19. [Sto71]
    H.J. Stoss. Zwei-Band Simulation von Turingmaschinen. Computing, 7: 222–235, 1971.Google Scholar
  20. [Tiw87]
    P. Tiwari. Lower bounds on communication complexity in distributed computer networks. Journal of the ACM, 34: 921–938, 1987.Google Scholar
  21. [WW85]
    K. Wagner and G. Wechsung. Computational Complexity. D. Reidel Publishing Company, Dordrecht, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Martin Dietzfelbinger
    • 1
  • Martin Hühne
    • 1
  1. 1.Fachbereich Informatik, Lehrstuhl IIUniversität DortmundDortmund

Personalised recommendations